Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Alice and Bob wish to share a secret using Elliptic Curve-based Diffie-Hellman. They agree on the curve $E$ given by $y^{2}=x^{3}+14 x+2$ over $\mathbb{F}_{31}$ and the base element $g=(12,10)$.
(a) Bob picks $b=10$ as his private exponent. What should Bob send to Alice?
(b) Alice sends $A=(18,17)$ to Bob. Compute Alice and Bob's shared secret.
(c) [Challenge (optional)] Find Alice's private exponent $a$. In other words, find $a$ such that $g^{a}=A$. This is an instance of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
2. Programming with elliptic curves. In the following, we write code to multiply points and compute powers of points in the elliptic curve group $E$ over $\mathbb{F}_{p}$, where $p$ is prime and $E$ is given by $y^{2}=x^{3}+A x+B$. We assume that $B \neq 0$ so that we may represent the identity element in $E$ as the special pair $(0,0)$.
(a) Write code for a function ec_mult $\left(p, A, B, x_{1}, y_{1}, x_{2}, y_{2}\right)$ that multiplies the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the elliptic curve group $E$ over $\mathbb{F}_{p}$, where $E$ is given by $y^{2}=x^{3}+$ $A x+B$. Be sure to handle the cases where the inputs or output are the identity point. For example, ec_mult $\left(p, A, B, x_{1}, y_{1}, 0,0\right)$ should return ( $x_{1}, y_{1}$ ) (modulo $p$ ) and ec_mult ( $p, A, B, x, y, x,-y$ ) should return $(0,0)$. Submit your code.
(b) Implement the fast power algorithm in a routine ec_fast_power $(p, A, B, x, y, n)$ that computes $(x, y)^{n}$ where within the elliptic curve group $E$ over $\mathbb{F}_{p}$. Submit your code.
3. Alice and Bob use Elliptic Curve ElGamal to send an encrypted message. They use the curve $E$ over $\mathbb{F}_{p}$, where $p=942857$ and $E$ is given by $y^{2}=x^{3}+152654 x+95765$. They agree to use base point $g=(395876,217218)$, which happens to have prime order $q=470749$ in $E$.
(a) Check your code from problem $\# 2$ by verifying the following:
i. $g^{500}=(485216,167677)$
ii. $g^{q}=(0,0)$, our representation for the identity element in $E$, and
iii. $g^{q+1}=g$.
(b) Alice selects $a=199481$ as her secret exponent. What should Alice send to Bob?
(c) Bob wants to send the message $m=(358621,245390)$ to Alice. He picks random element $k=304364$. What is the corresponding ciphertext $\left(c_{1}, c_{2}\right)$ that he should send to Alice?
(d) Later, Alice receives a second encrypted message $\left(c_{1}, c_{2}\right)$ from Bob, where $c_{1}=(21125,331345)$ and $c_{2}=(448432,307568)$. Decrypt the message.
