Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. Alice and Bob wish to share a secret using Elliptic Curve-based Diffie-Hellman. They agree on the curve E given by $y^2 = x^3 + 14x + 2$ over \mathbb{F}_{31} and the base element g = (12, 10).
 - (a) Bob picks b = 10 as his private exponent. What should Bob send to Alice?
 - (b) Alice sends A = (18, 17) to Bob. Compute Alice and Bob's shared secret.
 - (c) [Challenge (optional)] Find Alice's private exponent a. In other words, find a such that $g^a = A$. This is an instance of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
- 2. Programming with elliptic curves. In the following, we write code to multiply points and compute powers of points in the elliptic curve group E over \mathbb{F}_p , where p is prime and E is given by $y^2 = x^3 + Ax + B$. We assume that $B \neq 0$ so that we may represent the identity element in E as the special pair (0,0).
 - (a) Write code for a function $ec_mult(p, A, B, x_1, y_1, x_2, y_2)$ that multiplies the points (x_1, y_1) and (x_2, y_2) in the elliptic curve group E over \mathbb{F}_p , where E is given by $y^2 = x^3 + Ax + B$. Be sure to handle the cases where the inputs or output are the identity point. For example, $ec_mult(p, A, B, x_1, y_1, 0, 0)$ should return (x_1, y_1) (modulo p) and $ec_mult(p, A, B, x, y, x, -y)$ should return (0, 0). Submit your code.
 - (b) Implement the fast power algorithm in a routine $ec_fast_power(p, A, B, x, y, n)$ that computes $(x, y)^n$ where within the elliptic curve group E over \mathbb{F}_p . Submit your code.
- 3. Alice and Bob use Elliptic Curve ElGamal to send an encrypted message. They use the curve E over \mathbb{F}_p , where p = 942857 and E is given by $y^2 = x^3 + 152654x + 95765$. They agree to use base point g = (395876, 217218), which happens to have prime order q = 470749 in E.
 - (a) Check your code from problem #2 by verifying the following:
 - i. $g^{500} = (485216, 167677)$
 - ii. $g^q = (0,0)$, our representation for the identity element in E, and
 - iii. $q^{q+1} = q$.
 - (b) Alice selects a = 199481 as her secret exponent. What should Alice send to Bob?
 - (c) Bob wants to send the message m = (358621, 245390) to Alice. He picks random element k = 304364. What is the corresponding ciphertext (c_1, c_2) that he should send to Alice?
 - (d) Later, Alice receives a second encrypted message (c_1, c_2) from Bob, where $c_1 = (21125, 331345)$ and $c_2 = (448432, 307568)$. Decrypt the message.