Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Samantha uses the ElGamal signature scheme with prime $p=29669$ and primitive root $g=7$.
(a) Samantha selects private signing exponent $a=8216$. Her private signing key is $(p, g, a)=$ ($29669,7,8216$). What is her public verification key?
(b) Samantha wishes to sign a document D. At first, she picks random element $k=12480$, but she realizes this will not work. Why not?
(c) Instead, Samantha picks $k=20233$. What is the value of k^{-1} ? (Hint: the answer is not 7499.)
(d) Given that $D=24910$, find the signature $D_{\text {sig }}$.
2. WVU decides to use the ElGamal signature scheme to sign its official messages. It publishes the public verification key $(p, g, A)=(64937,24,32107)$. Which of the following document /signature pairs, if any, are authentic? Show your work.
(a) $D=57917, D_{\text {sig }}=(38546,36585)$
(b) $D=35829, D_{\text {sig }}=(59960,34982)$
(c) $D=4737, D_{\text {sig }}=(4196,48679)$
3. Let E be the elliptic curve given by $y^{2}=x^{3}-27 x+55$. In class, we showed that

$$
[(2,3)(3,1)](-1,-9)=[(-1,-9)](-1,-9)=(-1,-9)^{2}=(34 / 9,71 / 27)
$$

(a) Compute $(3,1)(-1,-9)$.
(b) Use part (a) to verify that $(2,3)[(3,1)(-1,-9)]=(34 / 9,71 / 27)$.

