Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. The Caesar cipher.
 - (a) Encrypt the message "exchange all assets" using a Caesar cipher with a forward shift of 5 characters.
 - (b) Decrypt the following message, which has been encoded with a Caesar cipher.

DPYLA OLTVU LFAVT VYYVD

- 2. [JJJ 1.{9,10}.c] Note: This problem is moved to HW2. Let d = gcd(16261, 85652). Use the extended Euclidean algorithm to find integers u and v such that 16261u + 85652v = d.
- 3. Practice with large numbers. Define a sequence of numbers a_0, a_1, a_2, \ldots recursively by $a_0 = a_1 = a_2 = 1$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 3$. For example, $a_3 = a_2 + a_1 + a_0 = 1 + 1 + 1 = 3$ and $a_4 = a_3 + a_2 + a_1 = 3 + 1 + 1 = 5$. Also, $a_{10} = 193$ and $a_{20} = 85525$.
 - (a) Consider the following recursive algorithm for computing a_n .

$$\frac{A(n)}{\text{if } n \leq 2 \text{ then}} \\
\text{return 1} \\
\text{return } A(n-1) + A(n-2) + A(n-3)$$

Comment on the efficiency of this code. What is the run-time of this algorithm?

- (b) Give a more efficient algorithm to compute a_n .
- (c) What are a_{16} and a_{55} ?
- (d) Define a new sequence b_n such that b_n is the sum of the digits in a_n . For example, since $a_{10} = 193$, we have that $b_{10} = 1 + 9 + 3 = 13$ and since $a_{20} = 85525$, we have that $b_{20} = 8 + 5 + 5 + 2 + 5 = 25$. What is b_{20000} ? Note: fib.py contains a function digit_sum(n) that computes the sum of the digits in n.