Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. The Caesar cipher.
(a) Encrypt the message "exchange all assets" using a Caesar cipher with a forward shift of 5 characters.
(b) Decrypt the following message, which has been encoded with a Caesar cipher.

DPYLA OLTVU LFAVT VYYVD
2. [JJJ 1. $\{9,10\} . c]$ Note: This problem is moved to HW2. Let $d=\operatorname{gcd}(16261,85652)$. Use the extended Euclidean algorithm to find integers $u$ and $v$ such that $16261 u+85652 v=d$.
3. Practice with large numbers. Define a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots$ recursively by $a_{0}=$ $a_{1}=a_{2}=1$ and $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$ for $n \geq 3$. For example, $a_{3}=a_{2}+a_{1}+a_{0}=$ $1+1+1=3$ and $a_{4}=a_{3}+a_{2}+a_{1}=3+1+1=5$. Also, $a_{10}=193$ and $a_{20}=85525$.
(a) Consider the following recursive algorithm for computing $a_{n}$.

$$
\begin{aligned}
& \frac{A(n):}{\text { if } n} \begin{aligned}
& \leq 2 \text { then } \\
& \quad \text { return } 1
\end{aligned} \\
& \quad \text { return } A(n-1)+A(n-2)+A(n-3) \\
& \hline
\end{aligned}
$$

Comment on the efficiency of this code. What is the run-time of this algorithm?
(b) Give a more efficient algorithm to compute $a_{n}$.
(c) What are $a_{16}$ and $a_{55}$ ?
(d) Define a new sequence $b_{n}$ such that $b_{n}$ is the sum of the digits in $a_{n}$. For example, since $a_{10}=193$, we have that $b_{10}=1+9+3=13$ and since $a_{20}=85525$, we have that $b_{20}=8+5+5+2+5=25$. What is $b_{20000}$ ? Note: fib.py contains a function digit_sum(n) that computes the sum of the digits in $n$.

