Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

- 1. [2 parts, 10 points each] Give a contrapositive proof of the following.
 - (a) Suppose $a, b \in \mathbb{Z}$. If ab + b is even, then a is odd or b is even.

We show that if a is even and b is odd, then ab to is odd. Since a is even, we have a = 2k for some $k \in \mathbb{Z}$. Since b is odd, we have b = 2l+1for some $l \in \mathbb{Z}$. If follows that ab + b = (2k)(2l+1) + (2l+1) = 4kl + 2k + 2l+1, or ab + b = 2(2kl + k + l) + 1. Since 2kl + k + l is an integer, if follows that ab + b is odd.

(b) Suppose
$$x \in \mathbb{R}$$
. If $x^2 + 5x < 0$, then $x < 0$.

We prove that if $x \ge 0$, then $x^2 + 5x \ge 0$. Since $x \ge 0$, we may multiply both sides by the non-negative number 5 to obtain $5x \ge 5.0$ or $5x \ge 0$. Similarly, we may multiply both sides of $x\ge 0$ by x to obtain $x^2\ge 0$. Adding both $x^2\ge 0$ and $5x\ge 0$ gives $x^2 + 5x \ge 0+0$, a) so $x^2 + 5x \ge 0$.

2. [10 points] Prove the following. Let $a \in \mathbb{Z}$. If $a \equiv 3 \pmod{7}$, then $a^2 \equiv 2 \pmod{7}$.

We give a direct prof. Suppose $a=3 \pmod{7}$. This means 7|a-3, d=3, d=3 a-3=7k for some $k \in \mathbb{Z}$. So a=7k+3 $d=a^2=(7k+3)^2=49k^2+42k+9$. Note that $a^2-2=49k^2+42k+9-2=7(7k^2+6k+1)$. Since $7k^2+6k+1 \in \mathbb{Z}$, we have that $7|a^2-2$, aJ so $a^2=2 \pmod{7}$ by definition. **E** 3. [10 points] Prove that for each $x \in \mathbb{R}$, either $(x + \sqrt{2})$ is irrational or $(-x + \sqrt{2})$ is irrational. Suppose for a contradiction that $x \in \mathbb{R}$ and both $x + \sqrt{2}$ and $-x + \sqrt{2} = \frac{1}{2}$ for same $a, b, c, d \in \mathbb{Z}$. Adding both equations gives $(x + \sqrt{2}) + (-x + \sqrt{2}) = \frac{a}{b} + \frac{c}{d}$, and this simplifies to $2\sqrt{2} = \frac{ad + bc}{bd}$. After dividing by 2, we have $\sqrt{2} = \frac{ad + bc}{2bd}$. Since both ad + bc and 2bd are integers, this implies $\sqrt{2}$ is rational. But we know from class that $\sqrt{2}$ is irrational, so this is a contradiction. Scratch wolk for # 4': $\frac{x^2 + y^2 - 2}{y} = \frac{x^2 + y^2 - 2yx}{y}$. Now shot have $x^2 - 2yx + y^2 > 0$ 4. [10 points] Let x and y be positive real numbers. Prove that if $x \neq y$, then $\frac{\pi}{y} + \frac{\pi}{y} > 2$.

Suppose that x all y are positive district real numbers. Suppose that x all y are positive district real numbers. Since x all y are distinct, we have $(x - y)^2 > 0$. If follows that $x^2 - 2xy + y^2 > 0$ all so $x^2 + y^2 > 2xy$. Since x all y are both positive, so is xy. Dividing both sides by xy gives $\frac{x^2}{xy} + \frac{y^2}{xy} > 2$

which simplifies to $\frac{x}{y} + \frac{y}{x} > 2$. \overline{a}

5. [10 points] Let $a, b, c \in \mathbb{Z}$. Use the corollary below to prove that if $a \mid c$ and $b \mid c$ where gcd(a, b) = 1, then $ab \mid c$.

Corollary 1. Let
$$x, y, z \in \mathbb{Z}$$
. If $x \mid yz$ and $gcd(x, y) = 1$, then $x \mid z$.
Suppose alc and blc where $gcd(a,b)=1$. Since $alc and blc,$ we have
 $c=ak$ and $c=bl$ for same $k, l \in \mathbb{Z}$. So $ak = bl$ and since all
factors are integers, we have $a \mid bl$. Since $gcd(a,b)=1$, the Corollarg
applies with $x=a$, $y=b$, and $z=l$. If follows that $a \mid l$, and so $l=ta$
for some $t \in \mathbb{Z}$. So $c = bl = b(ta) = t(ab)$ and it follows that
 $ab \mid c$.

6. [5 points] How many subsets of $\{1, \ldots, 14\}$ have size 4? Give a simplified, numerical answer.

$$\binom{14}{4} = \frac{14!}{4!(14-4)!} = \frac{14!}{4!(10)!} = \frac{14!}{4!(10)!} = \frac{14!(3.12\cdot11.10!)}{4.3.12\cdot11.10!} = 7\cdot13\cdot11 = 91\cdot11 = 910 + 91 = [1001]$$

- 7. [3 parts, 5 points each] A business class has a total enrollment of 26 students, with 14 men and 12 women. The class will send a team of 6 students to compete in a national contest. In the following, you may leave your answers in terms of binomial coefficients and simple arithmetic operations (no need to simplify).
 - (a) How many ways are there to select a team?

(b) How many ways are there to select a team consisting of all women?

(c) How many ways are there to select a team with at least one man and at least one woman?

8. [20 points] Let n be a positive integer. Prove that there exist unique non-negative integers a and b such that $n = 3^a \cdot b$ and $3 \nmid b$.

Existence: let a be the maximum integer such that
$$3^{\alpha}|n$$
. Note that $a \ge 0$,
since $3^{\alpha} = 1$ and $1|n$. Since $3^{\alpha}|n$, we have $n = 3^{\alpha} \cdot b$ for
Same $b \in \mathbb{Z}$. Since n and 3^{α} are both positive integers, it follows that
 b is also positive, and so b is non-negative. We claim that $3 \pm b$.
Indeed, if $3|b$, then $b = 3s$ for some $s \in \mathbb{Z}$ and we would have
 $n = 3^{\alpha} \cdot b = 3^{\alpha} \cdot (3s) = 3^{\alpha+1} \cdot s$
giving $3^{\alpha+1}|n$ and contradicting that a is the maximum integer such that
 $3^{\alpha}|n$. So $3\pm b$ as claimed and $n = 3^{\alpha} \cdot b$ for some non-negative integers
 $a a b$ such that $3\pm b$.
Uniqueneos: Suppose $n = 3^{\alpha} \cdot b$, a $n = 3^{\alpha_2} \cdot b_2$ where $a_{1/\alpha_2}, b_{1/\alpha_2}, b_{2/\alpha_3}$
are all non-negative integers, $3\pm b_1$, and $3\pm b_2$. We may assume, instant

loss of generality, that
$$a_1 \ge a_2$$
. We have $3^{a_1} \cdot b_1 = 3^{a_2} \cdot b_2$, and
dividing both sides by 3^{a_2} gives $3^{a_1-a_2} \cdot b_1 = b_2$. Note that if
 $a_1 \ge a_2$, then 3 divides $3^{a_1-a_2} \cdot b_1$ and so $3 | b_2 \cdot B + b_1 + b_2$.
and so it follows that $a_1 = a_2 \cdot Hene \quad 3^{a_1-a_2} \cdot b_1 = b_2 \quad simplifies$ to
 $3^{\circ} \cdot b_1 = b_2$, or $1 \cdot b_1 = b_2$. Since $a_1 = a_2$ and $b_1 = b_2$, there is only
one pair of non-negative integers $a_1 = b_2$ such that $n = 3^{\circ} \cdot b_1 = 3$.

(Scratch Paper)