Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2 parts, 10 points each] Give a contrapositive proof of the following.
(a) Suppose $a, b \in \mathbb{Z}$. If $a b+b$ is even, then a is odd or b is even.

We show that if a is even and b is odd, then $a b+b$ is odd. Since a is even, we have $a=2 k$ for sane $k \in \mathbb{Z}$. Since b is odd, we have $b=2 l+1$ for same $l \in \mathbb{Z}$. If follows that $a b+b=(2 k)(2 l+1)+(2 l+1)=4 k l+2 k+2 l+1$, or $a b+b=2(2 k l+k+l)+1$. Since $2 k l+k+l$ is an integer, it follows that $a b+b$ is odd.
(b) Suppose $x \in \mathbb{R}$. If $x^{2}+5 x<0$, then $x<0$.

We prove that if $x \geq 0$, Then $x^{2}+5 x \geq 0$. Since $x \geq 0$, we may multiply both sides by the non-negative number 5 to obtain $5 x \geq 5.0$ or $5 x \geq 0$. Similarly, we may multiply both sides of $x \geq 0$ by x to obtain $x^{2} \geq 0$. Adding bath $x^{2} \geq 0$ and $5 x \geq 0$ gives $x^{2}+5 x \geq 0+0$, al so $x^{2}+5 x \geq 0$.
2. [10 points] Prove the following. Let $a \in \mathbb{Z}$. If $a \equiv 3(\bmod 7)$, then $a^{2} \equiv 2(\bmod 7)$.

We give a direct prof. Suppose $a \equiv 3(\bmod 7)$. This means $7 \mid a-3$, al so $a-3=7 k$ for save $k \in \mathbb{Z}$. So $a=7 k+3$ a) $a^{2}=(7 k+3)^{2}=49 k^{2}+42 k+9$.

Note that $a^{2}-2=49 k^{2}+42 k+9-2=7\left(7 k^{2}+6 k+1\right)$. Since $7 k^{2}+6 k+1 \in \mathbb{Z}$, we have that $7 \mid a^{2}-2$, and so $a^{2} \equiv 2(\bmod 7)$ by definition.
3. [10 points] Prove that for each $x \in \mathbb{R}$, either $(x+\sqrt{2})$ is irrational or $(-x+\sqrt{2})$ is irrational.

Suppose for a contradiction that $x \in \mathbb{R}$ and both $x+\sqrt{2}$ al $-x+\sqrt{2}$ are rational. This means $x+\sqrt{2}=\frac{a}{b}$ and $-x+\sqrt{2}=\frac{c}{d}$ for save $a, b, c, d \in \mathbb{Z}$.

Adding both equations gives $(x+\sqrt{2})+(-x+\sqrt{2})=\frac{a}{b}+\frac{c}{d}$, and this simplifies to $2 \sqrt{2}=\frac{a d+b c}{b d}$. After dividing by 2 , we have $\sqrt{2}=\frac{a d+b c}{2 b d}$. Since both $a d+b c$ and $2 b d$ are integers, this implies $\sqrt{2}$ is rational. But we know fran class that $\sqrt{2}$ is irrational, so this is a contradiction. Scratch work for \#4:.

$$
\begin{array}{|l|l|l|}
\begin{array}{l}
\frac{x}{y}+\frac{y}{x}>2 \\
\frac{x^{2}}{y x}+\frac{y^{2}}{y x}>2
\end{array} & \begin{array}{l}
x^{2}+y^{2}>2 y x \\
x^{2}-2 y x+y^{2}>0 \\
\\
(x-y)^{2}>0
\end{array} & \begin{array}{l}
\text { Now start } \\
\text { proof e and and wok } \\
\text { backward. }
\end{array} \\
\text { Date }
\end{array}
$$

4. [10 points] Let x and y be positive real numbers. Prove that if $x \neq y$, then $\frac{x}{y}+\frac{y}{x}>2$.

Suppose that x and y are positive distinct real numbers.
Since x an y are distinct, we have $(x-y)^{2}>0$.
If follows that $x^{2}-2 x y+y^{2}>0$ an so $x^{2}+y^{2}>2 x y$. Since
x an y are both positive, so is $x y$. Dividing both sides by $x y$ gives

$$
\frac{x^{2}}{x y}+\frac{y^{2}}{x y}>2
$$

which simplifies to $\frac{x}{y}+\frac{y}{x}>2$.
5. [10 points] Let $a, b, c \in \mathbb{Z}$. Use the corollary below to prove that if $a \mid c$ and $b \mid c$ where $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.

Corollary 1. Let $x, y, z \in \mathbb{Z}$. If $x \mid y z$ and $\operatorname{gcd}(x, y)=1$, then $x \mid z$.
Suppose $a \mid c$ and $b \mid c$ where $g c d(a, b)=1$. Since $a \mid c$ and b / c, we have $c=a k$ ad $c=b l$ for save $k, l \in \mathbb{Z}$. So $a k=b l$ an since all factors are integers, we have $a \mid b l$. Since $\operatorname{gcd}(a, b)=1$, the Corollary applies with $x=a, y=b$, ad $z=l$. It follows that $a l l$, as s. $l=t a$ for some $t \in \mathbb{Z}$. So $c=b l=b(t a)=t(a b)$ and it follows that $a b \mid c$.
6. [5 points] How many subsets of $\{1, \ldots, 14\}$ have size 4 ? Give a simplified, numerical answer.

$$
\binom{14}{4}=\frac{14!}{4!(14-4)!}=\frac{14!}{4!\cdot(10)!}=\frac{74 \cdot 13 \cdot 12 \cdot 11 \cdot 10!}{43 \cdot 2 \cdot 1 \cdot 10!}=7 \cdot 13 \cdot 11=91 \cdot 11=910+91=1001
$$

7. [3 parts, $\mathbf{5}$ points each] A business class has a total enrollment of 26 students, with 14 men and 12 women. The class will send a team of 6 students to compete in a national contest. In the following, you may leave your answers in terms of binomial coefficients and simple arithmetic operations (no need to simplify).
(a) How many ways are there to select a team?

$$
\binom{26}{6}
$$

Fran 26 total students, pick 6.
(b) How many ways are there to select a team consisting of all women?

$$
\binom{12}{6} \quad \text { From } 12 \text { woven, pick } 6 \text {. }
$$

(c) How many ways are there to select a team with at least one man and at least one woman?

Fran all teams, subtract the teams with all women and the teams with all men
8. [20 points] Let n be a positive integer. Prove that there exist unique non-negative integers a and b such that $n=3^{a} \cdot b$ and $3 \nmid b$.
Existence: Let a be the maximum integer such that $3^{a} / n$. Note that $a \geq 0$, since $3^{\circ}=1$ an $1 / n$. Since $3^{a} / n$, we have $n=3^{a} \cdot b$ for same $b \in \mathbb{Z}$. Since n and 3^{a} are both positive integers, it follows that b is also positive, $a d$ so b is non-negative. We claim that $3+b$.
Indeed, if $3 \mid b$, then $b=3 s$ for some $s \in \mathbb{Z}$ and we would have

$$
n=3^{a} \cdot b=3^{a} \cdot(3 s)=3^{a+1} \cdot s
$$

giving $3^{a+1} \operatorname{In}$ and contradicting that a is the maximum integer such that $3^{a} \ln$. So $3+b$ as claimed ad $n=3^{a} \cdot b$ for some non-negative integers a aus b such that $3+b$.
Uniqueness: Suppose $n=3^{a_{1}} \cdot b_{1}$ an $n=3^{a_{2}} \cdot b_{2}$ where $a_{1}, a_{2}, b_{1}, b_{2}$ are all non-negative integers, $3+b_{1}$, an $3+b_{2}$. We may assume, without loss of generality, that $a_{1} \geq a_{2}$. We have $3^{a_{1}} \cdot b_{1}=3^{a_{2}} \cdot b_{2}$, al dividing both sides by $3^{a_{2}}$ gives $3^{a_{1}-a_{2}} \cdot b_{1}=b_{2}$. Note that if $a_{1}>a_{2}$, then 3 divides $3^{a_{1}-a_{2}} \cdot b$, ad so $3 \mid b_{2}$. But we know $3+b_{2}$, and so it follows that $a_{1}=a_{2}$. Hence $3^{a_{1}-a_{2}} \cdot b_{1}=b_{2}$ simplifies to $3^{0} \cdot b_{1}=b_{2}$, or $1 \cdot b_{1}=b_{2}$. Since $a_{1}=a_{2}$ and $b_{1}=b_{2}$, there is only one pair of non-negative integers a, b such that $n=3^{a} \cdot b$ as $3+b$.
(Scratch Paper)

