Name: \qquad

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [9 parts, 2 points each] Decide whether the following are true or false. Indicate your answer by writing the entire word. No justification required.

$$
A=\{\varnothing\} \quad B=\{1,2,3\} \quad C=\{\{1,2\},\{3\}\} \quad D=\{\varnothing,\{1,2,3\}\} \quad E=\{\{2,1\},\{2,3\}\}
$$

(a) $3 \in B$
(b) $3 \in C$
(c) $A \in D$
(d) $B \in D$
(e) $2 \subseteq B$
(f) $B \subseteq C$
(g) $B \subseteq D$
(h) $A \subseteq D$
(i) $C \subseteq E$
2. [6 points] A subset of \mathbb{R}^{2} is sketched below; the pattern in the figure below continues throughout the plane. Use set-builder notation to give a simple description of the set.

3. [6 parts, 3 points each] Express each set by listing the elements between braces.

$$
A=\{\{ \},\{1,2\},\{2,1\}\} \quad B=\{\varnothing, 2,\{1,2\},(1,2)\} \quad C=\{\varnothing, 1+1,\{2,1\},(2,1)\} \quad D=\{\{1\}, 1,\{2\}, 2\}
$$

(a) $A \cap B$
(d) $(C-A) \times A$
(b) $B \cap C$
(e) $\mathcal{P}(B \cap D)$
(c) $(B \cup C)-A$
(f) $(A \cup B \cup C) \cap \mathbb{Z}^{2}$
4. [3 parts, 4 points each] Give an example or explain why no examples exist.
(a) A set A such that $(1,2) \in \mathcal{P}(A)$.
(b) Sets A and B such that $|A \times B|=3$.
(c) A nonempty set A such that $A \subseteq \mathcal{P}(A)$.
5. [4 parts, 3 points each] Give Venn Diagrams for each of the following sets relative to a universe U.
(a) $(A-B) \cup(B-A)$
(c) $(C \cup B) \cap A$
(b) $(A \cup C) \cap(B \cup C)$
(d) $\overline{A \cup B} \cup(A \cap B \cap C)$
6. [5 points] Give two examples of an infinite set A such that $A \in \mathcal{P}(\mathcal{P}(\mathbb{Z}))$.
7. [5 points] Use Venn Diagrams to decide if the equation $(A \cap B)-C=(A-C) \cap B$ is valid for all sets A, B, and C.
8. [3 parts, 6 points each] Let $D_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:(x-\alpha)^{2}+y^{2} \leq \alpha^{2}+1^{2}\right\}$. In English, D_{α} is the closed disk with center at $(\alpha, 0)$ whose circumference passes through the points $(0,-1)$ and $(0,1)$. Let $I=\{\alpha \in \mathbb{R}: \alpha \geq 0\}$.
(a) Sketch the example sets D_{0}, D_{1}, and D_{2}.
(b) Sketch $\bigcap_{\alpha \in I} D_{\alpha}$.
(c) Sketch $\bigcup_{\alpha \in I} D_{\alpha}$.
9. [6 points] Briefly describe Russell's paradox and how mathematicians have addressed it.

