Name:

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [9 parts, 2 points each] Decide whether the following are true or false. Indicate your answer by writing the entire word. No justification required.

 $A = \{\varnothing\} \quad B = \{1,2,3\} \quad C = \{\{1,2\},\{3\}\} \quad D = \{\varnothing,\{1,2,3\}\} \quad E = \{\{2,1\},\{2,3\}\}$

(a) $3 \in B$

(d) $B \in D$

(g) $B \subseteq L$

(b) $3 \in C$

(e) $2 \subseteq B$

(h) $A \subseteq D$

(c) $A \in D$

(f) $B \subseteq C$

(i) $C \subseteq E$

2. [6 points] A subset of \mathbb{R}^2 is sketched below; the pattern in the figure below continues throughout the plane. Use set-builder notation to give a simple description of the set.

3. [6 parts, 3 points each] Express each set by listing the elements between braces.

(a) $A \cap B$

(d) $(C-A)\times A$

(b) $B \cap C$

(e) $\mathcal{P}(B \cap D)$

(c) $(B \cup C) - A$

(f) $(A \cup B \cup C) \cap \mathbb{Z}^2$

- 4. [3 parts, 4 points each] Give an example or explain why no examples exist.
 - (a) A set A such that $(1,2) \in \mathcal{P}(A)$.
 - (b) Sets A and B such that $|A \times B| = 3$.
 - (c) A nonempty set A such that $A \subseteq \mathcal{P}(A)$.

- 5. [4 parts, 3 points each] Give Venn Diagrams for each of the following sets relative to a universe U.
 - (a) $(A B) \cup (B A)$

(c) $(C \cup B) \cap A$

(b) $(A \cup C) \cap (B \cup C)$

(d) $\overline{A \cup B} \cup (A \cap B \cap C)$

6. [5 points] Give two examples of an infinite set A such that $A \in \mathcal{P}(\mathcal{P}(\mathbb{Z}))$.

7. [5 points] Use Venn Diagrams to decide if the equation $(A \cap B) - C = (A - C) \cap B$ is valid for all sets A, B, and C.

- 8. [3 parts, 6 points each] Let $D_{\alpha} = \{(x,y) \in \mathbb{R}^2 : (x-\alpha)^2 + y^2 \leq \alpha^2 + 1^2\}$. In English, D_{α} is the closed disk with center at $(\alpha,0)$ whose circumference passes through the points (0,-1) and (0,1). Let $I = \{\alpha \in \mathbb{R} : \alpha \geq 0\}$.
 - (a) Sketch the example sets D_0 , D_1 , and D_2 .

(b) Sketch $\bigcap_{\alpha \in I} D_{\alpha}$.

(c) Sketch $\bigcup_{\alpha \in I} D_{\alpha}$.

9. [6 points] Briefly describe Russell's paradox and how mathematicians have addressed it.