Directions: Solve the following problems. Give supporting work/justification where appropriate.

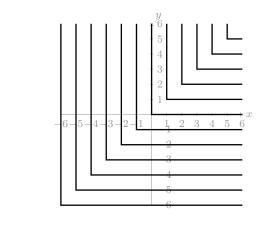
1. [9 parts, 2 points each] Decide whether the following are true or false. Indicate your answer by writing the entire word. No justification required.

$$A = \{\emptyset\} \quad B = \{1, 2, 3\} \quad C = \{\{1, 2\}, \{3\}\} \quad D = \{\emptyset, \{1, 2, 3\}\} \quad E = \{\{2, 1\}, \{2, 3\}\}$$
(a) $3 \in B$

$$TRUE$$
(d) $B \in D$

$$TRUE$$
(e) $2 \subseteq B$
(f) $A \subseteq D$
(f) $B \subseteq C$
(f) $B \subseteq$

2. [6 points] A subset of \mathbb{R}^2 is sketched below; the pattern in the figure below continues throughout the plane. Use set-builder notation to give a simple description of the set.



$$\{(x,y) \in \mathbb{R}^2 : \min(x,y) \in \mathbb{Z}\}$$

Í

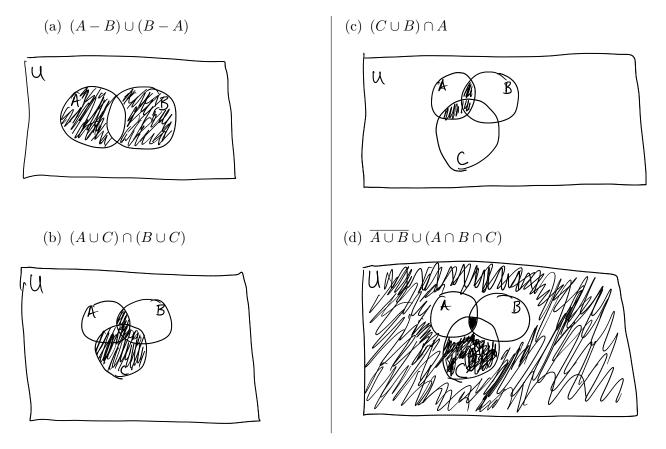
- 3. [6 parts, 3 points each] Express each set by listing the elements between braces. $A = \{\{\}, \{1,2\}, \{2,1\}\} \quad B = \{\varnothing, 2, \{1,2\}, (1,2)\} \quad C = \{\varnothing, 1+1, \{2,1\}, (2,1)\} \quad D = \{\{1\}, 1, \{2\}, 2\}$ (d) $(C - A) \times A$ $(-A = \{2, (2, 1)\}$ $A = \{\emptyset, \{1, 2\}\}$ (a) $A \cap B \quad A = \{\phi, \{1,2\}\}$ $((-A) \times A = \{ \{ (2, \emptyset), (2, \{1, 2\}), (2, 1), \{1, 2\} \} \}$ $A \cap B = \{ \phi, \xi | , 23 \}$ (b) $B \cap C$ (e) $\mathcal{P}(B \cap D)$ B∧D= {23 BnC= { Ø, 2, 21,23} $\mathcal{P}(B \cap D) = \left\{ \xi \phi, \xi 23 \right\}$ (f) $(A \cup B \cup C) \cap \mathbb{Z}^2$ (c) $(B \cup C) - A$ $\{2, (1,2), (2,1)\}$ This set has all efts in A, B, and C that are ordered pairs of integers. $\left\{ (1,2), (2,1) \right\}$
- 4. [3 parts, 4 points each] Give an example or explain why no examples exist.
 - (a) A set A such that $(1,2) \in \mathcal{P}(A)$.

(b) Sets A and B such that $|A \times B| = 3$.

Any sets A as B with
$$|A|=1$$
 of $|B|=3$ will work. For
example, $A=\underline{\xi}13$ and $B=\underline{\xi}1,z,33$.
(c) A nonempty set A such that $A\subseteq \mathcal{P}(A)$.
 $A \subseteq \mathcal{P}(A)$ means every element in A is an elt in $\mathcal{P}(A)$ as hence
 $A \subseteq \mathcal{P}(A)$ means every element in A is a subset of A. So take
 $A \subseteq \mathcal{P}(A)$ means every elt in A is a subset of A. So take
 2

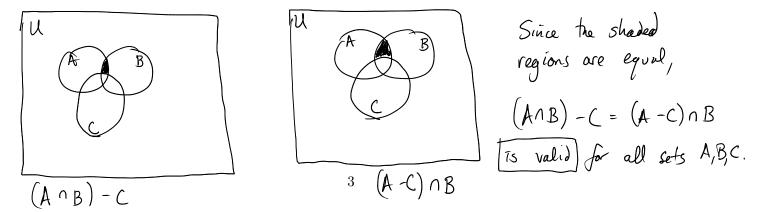
$$A = \underline{\xi} \beta \underline{3}$$
.

5. [4 parts, 3 points each] Give Venn Diagrams for each of the following sets relative to a universe U.

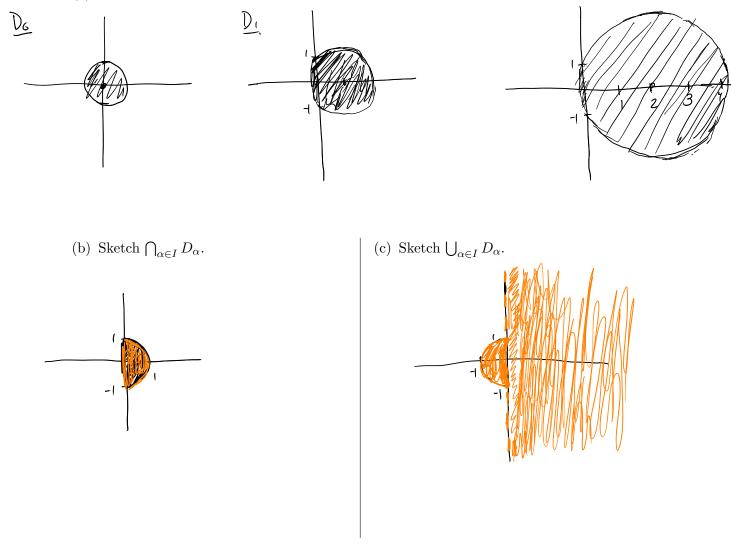


6. [5 points] Give two examples of an infinite set A such that $A \in \mathcal{P}(\mathcal{P}(\mathbb{Z}))$. Many examples. $\underbrace{\mathcal{E}_{x} \ 1}^{,} \quad A = \mathcal{P}(\mathbb{Z}) = \{X : X \subseteq \mathbb{Z}\}$ $\underbrace{\mathcal{E}_{x} \ 2}^{,} \quad A = \{X : X \subseteq \mathbb{Z} \text{ and } X \text{ is finite } \}$

7. [5 points] Use Venn Diagrams to decide if the equation $(A \cap B) - C = (A - C) \cap B$ is valid for all sets A, B, and C.



- 8. [3 parts, 6 points each] Let $D_{\alpha} = \{(x, y) \in \mathbb{R}^2 : (x \alpha)^2 + y^2 \leq \alpha^2 + 1^2\}$. In English, D_{α} is the closed disk with center at $(\alpha, 0)$ whose circumference passes through the points (0, -1) and (0, 1). Let $I = \{\alpha \in \mathbb{R} : \alpha \geq 0\}$.
 - (a) Sketch the example sets D_0 , D_1 , and D_2 .



9. [6 points] Briefly describe Russell's paradox and how mathematicians have addressed it.

Russell's paradox results from defining $R = \{A : A \notin A\}$ and then observing that both $R \in R$ and $R \notin R$ lead to contradictions. Mathematicians introduced axiometric set theory which carefully restricts what objects can be collected together to form sets; in particular, it is no longer permitted to define the set R as we have done above.