Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

- 1. [2 parts, 5 points each] Prove the following using either a direct proof or proof by contrapositive.
 - (a) Let $x, y \in \mathbb{R}$. If x + y is irrational, then x is irrational or y is irrational.

We show the contrapositive: if x and y are rational, then x+y is rational.
Suppose x and y are radional. By definition, we have
$$x = \frac{2}{b}$$
 and $y = \frac{2}{b}$ for
some $a_1b_1c_1d \in \mathbb{Z}$ with $b\neq 0$ and $d\neq 0$. We compute
 $x+y = \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$.
Since $ad+bc$ and bd are integers, it follows that $x+y$ is rational. \mathbb{Z}

(b) Let a and b be positive integers. Prove that if a-b > 1, then $a^2 - b^2$ is not prime. (Hint: what algebraic formulas apply to a difference of squares?)

We give a direct proof. Let a a b be positive integers such that

$$a-b>1$$
. We show that a^2-b^2 is not prime. Indeed, $a^2-b^2=(a-b)(a+b)$.
By assumption, $a-b>1$. Also $a+b \ge 1+1=2$ since a a b are positive
integers. Surve $a+b=2$, it follows that $a^2-b^2=(a-b)\cdot 2$, also $a-b=\frac{1}{2}(a^2-b^2)$.
So $1 < a-b = \frac{1}{2}(a^2-b^2)$. Since $(a-b) | a^2-b^2 a$ a $a-b$ is not 4 or
 a^2-b^2 , it follows that a^2-b^2 has a positive divisor other than 1 and
itself. Therefore a^2-b^2 is not prime.