Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [4 points] Suppose that $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $a \mid c$, then $a \mid b+c$.

Since alb ad a $l c$, we have $b=k a$ ad $c=l a$ for save $k, \ell \in \mathbb{Z}$.
We compute $b+c=k a+l a=(k+l) a$. Since $k+l$ is an integer, it follows that $a \mid b+c$.
2. [3 points] Suppose that $x, y \in \mathbb{R}$. Prove that if $7 x^{2}+y=7 x+x y$, then $x=1$ or $y=7 x$.

Suppose that $7 x^{2}+y=7 x+x y$. Rearranging these tams and supplying, we have

$$
\begin{aligned}
0 & =7 x^{2}-7 x+y-x y=7 x(x-1)+y(1-x) \\
& =7 x(x-1)-y(x-1)=(7 x-y)(x-1)
\end{aligned}
$$

Since a product only gives zero when one of its factors is zero, it follows that $x-1=0$ or $7 x-y=0$. In the first case, $x=1$ and in the second case, $y=7 x$. A曷
3. [3 points] Suppose that $n \in \mathbb{Z}$. Prove that if $3 \nmid n$, then $3 \mid n^{2}+2$. Hint: use the division lemma to divide n by 3 and try cases depending on the remainder.

Suppose that $3+n$. By the division lemma, there exist of, $r \in \mathbb{Z}$ such that $n=3 q+r$ and $0 \leq r \leq 2$. However, since $3+n$, we may rule out $r=0$. Therefore $1 \leq r \leq 2$ and so $r=1$ or $r=2$.
Case 1: If $r=1$, then we have $n^{2}+2=(3 q+1)^{2}+2=9 q^{2}+6 q+3=3\left(q^{2}+2 q+1\right)$. Since $q^{2}+2 q+1 \in \mathbb{Z}$, we have $3 \ln n^{2}+2$.
Case 2: If $r=2$, then we have $n^{2}+2=(3 q+2)^{2}+2=q q^{2}+12 q+6=3\left(3 q^{2}+4 q+2\right)$. Since $3 \xi^{2}+4 \varepsilon+2 \in \mathbb{C}$, we have $3 \ln ^{2}+2$.
In all cases, $3 \ln ^{2}+2$.

