Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [4 points] Suppose that $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $a \mid c$, then $a \mid b + c$.

Since all all, we have $b = k \alpha$ and $c = l \alpha$ for some $k, l \in \mathbb{Z}$. We compute $b + c = k \alpha + l \alpha = (k+l) \alpha$. Since $k + l \overline{l} \overline{s}$ an integer, it follows that $\alpha | b + c$.

2. [3 points] Suppose that $x, y \in \mathbb{R}$. Prove that if $7x^2 + y = 7x + xy$, then x = 1 or y = 7x.

Suppose that $7x^2 + y = 7x + xy$. Rearranging these tems and supplying, we have

$$O = 7x^{2} - 7x + y - xy = 7x(x-1) + y(1-x)$$

= 7x(x-1) - y(x-1) = (7x - y)(x-1).

Since a product only gives zero when one of its factors is zero, it follows that x-1=0 or 7x-y=0. In the first case, x=1 and in the second case, y=7x. 3. [3 points] Suppose that $n \in \mathbb{Z}$. Prove that if $3 \nmid n$, then $3 \mid n^2 + 2$. Hint: use the division lemma to divide n by 3 and try cases depending on the remainder.