Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [3 parts, 1 point each] Translate the following sentences to symbolic logic as directly and simply as possible. Is the statement true or false? Write the entire word.
(a) The emptyset is a subset of every set.
\forall std $S, \phi \leq S$
This is ter N_{0} mother whet S is, way et in \varnothing is abs an et. in S.
(b) There is an integer which is both a perfect square and a perfect cube.

$$
\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \quad \exists z \in \mathbb{Z}, \quad x=y^{2} \wedge x=z^{2}
$$

True. For example $1=1^{2}$ at $1=1^{3}$.
(c) Each rational number can be bounded above by some integer.

$$
\forall x \in \mathbb{Q}, \exists y \in \mathbb{Z}, \quad x \leq y .
$$

True. Given $x \in \mathbb{Q}$, we can always rand up to the next integer y.
2. [3 parts, 1 point each] Translate the following statements/open sentences in symbolic logic to English sentences as simply as possible. Is the statement true or false? Write the entire word.
(a) $\sim\left(\exists x \in \mathbb{Q}, x^{2}=2\right)$

The number $\sqrt{2}$ is not rational.
This is true.
(b) $\forall S \subseteq \mathbb{R},[(\exists a \in \mathbb{N},|S| \leq a) \Longrightarrow(\exists m \in S, \forall x \in S, x \leq m)]$

Every finite set of real numbers has a maximum element.
This is true.
(c) $\forall x \in \mathbb{R}, \forall \varepsilon \in \mathbb{R},[\varepsilon>0 \Longrightarrow \exists y \in \mathbb{Q},|x-y|<\varepsilon]$

Son 1:- For each real number x an each positive ε, there is a rational number y which is at distance at most ε from x.
Soln 2: Each real number can be arbitrarily well approximated by a rational. This is true
3. [$\mathbf{2}$ parts, $\mathbf{2}$ points each] Negate the following sentences as simply and naturally as possible. (You may translate to and from symbolic logic if helpful, but this is not required.) Is the original statement true or false? Explain.
(a) Every pair of distinct lines in the plane intersects at a unique point.

$$
\forall \text { lines } l_{1}, \forall \text { lives } l_{2}, l_{1} \neq l_{2} \Rightarrow\left|l_{1} \cap l_{2}\right|=1 \text {. }
$$

Negate: \exists line l_{1}, \exists line $l_{2}, \quad l_{1} \neq l_{2} \wedge\left|l_{1} \cap l_{2}\right| \neq 1$.
In English: There exists a pair of distinct lines which intersect in zero or more than 1 point.

The original statement is false: two distinct parallel lines do not intersect.
(b) There is an infinite set of integers such that no integer in the set divides some other integer in the set.

$$
\forall S \subseteq \mathbb{Z}[(S \text { is infinite }) \Rightarrow(\exists x \in S, \exists y \in S,(x \neq y \wedge x \text { विंds } y))]
$$

In English: Every infinite set of integers has a pair of distinct integers with one dividing the other.

The original statement is free. For example, if $S=\{p: p$ is prime $\}$, then no integer in S divides same other integer in S.

