Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2 parts, 1 point each] Express the following sets using a list between braces, using the ellipses if necessary.
(a) $\left\{2^{n}: n \in \mathbb{Z}\right.$ and $\left.|n| \leq 3\right\}$

$$
\left\{2^{-3}, 2^{-2}, 2^{-1}, 2^{0}, 2^{1}, 2^{2}, 2^{3}\right\}=\left\{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8\right\}
$$

(b) $\{(x, y): x, y \in \mathbb{Z}$ and $x y=25\}$

$$
\{(1,25),(5,5),(25,1),(-1,-25),(-5,-5),(-25,-1)\}
$$

2. [4 parts, 1 point each] Determine whether the following sets are infinite or finite. If the set is finite, then determine its cardinality.
(a) $\{1,\{1\},\{\{1\}\},\{\{\{1\}\}\}, \ldots\}$

(b) $\{\{1,2\},\{2,1\}, \mathbb{R}\}$

$$
\begin{aligned}
& \{1,2\},\{2,1\}, \mathbb{R}\} \\
& \{1,2\}=\{2,1\} \text {, so this is a set that contains } 2 \text { elements: }
\end{aligned}
$$

$$
\text { a set of size } 2 \text { an the set of real numbers. }
$$

(c) $\left\{x \in \mathbb{R}: x^{2}=1\right\}$

$$
\left.\begin{aligned}
x^{2}=1 & x^{2}-1=6 \\
& (x-1)(x+1)=0 \\
& x=1, x=-1
\end{aligned} \right\rvert\, \begin{aligned}
& \text { So the set equals }\{-1,1\} \\
& \text { at has size } 2 \text {. }
\end{aligned}
$$

(d) $\{\varnothing,\{ \},\{x \in \mathbb{Q}: x$ is not an integer $\}\}$

$$
\phi=\{ \} \text {, so this set has size } 2 \text {. }
$$

3. [2 parts, 1 point each] Use set-builder notation to express the following sets compactly.
(a) $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}=\left\{\frac{1}{n}: n \in \mathbb{Z}\right.$ as $\left.n \geq 2\right\}$
(b) The set of all points (x, y) in the interior of the triangle with vertices $(0,0),(0,1)$, and $(1,0)$.

4. [1 point] Is there a set A which satisfies the following conditions: (1) every element in A is an even integer, and (2) every element in A is an odd integer? If so, then give an example of such a set. If not, then explain why not.

5. [1 point] Use set-builder notation to express the subset of \mathbb{R}^{2} displayed below.

$$
\left\{(x, y) \in \mathbb{R}^{2}:|x|=|y|\right\}
$$

