Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

1. Proofs involving sets. Prove the following.
(a) $\{6 n: n \in \mathbb{Z}\}=\{2 n: n \in \mathbb{Z}\} \cap\{3 n: n \in \mathbb{Z}\}$.
(b) $\left\{9^{n}: n \in \mathbb{Q}\right\}=\left\{3^{n}: n \in \mathbb{Q}\right\}$
(c) If A and B be sets, then $A \subseteq B$ if and only if $A \cap B=A$.
(d) $\bigcap_{x \in \mathbb{R}}\left[3-x^{2}, 5+x^{2}\right]=[3,5]$.
2. Suppose $B \neq \varnothing$ and $A \times B \subseteq B \times C$. Prove that $A \subseteq C$.
3. Each of the following is true or false. Decide which is the case and prove or disprove accordingly, using any method.
(a) For every natural number n, the integer $n^{2}+17 n+17$ is prime.
(b) If $a, b, c \in \mathbb{N}$ and $a b, b c$, and $a c$ all have the same parity, then a, b, and c all have the same parity.
(c) If A and B are finite sets, then $|A \cup B|=|A|+|B|$.
(d) If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B)=\mathcal{P}(A \cap B)$.
(e) If A and B are sets, then $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$.
(f) If p and q are prime numbers for which $p<q$, then $2 p+q^{2}$ is odd.
4. Suppose that $\alpha \in \mathbb{R}$ and $0<\alpha<1$. A magical cake has icing on one side. A baker cuts the cake to make a slice with center angle $\alpha \cdot 2 \pi$ (radians), flips the slice over (so the piece has icing face-down), and the slice magically reattaches to the rest of the cake. The baker continues to make wedge slices with center angle $\alpha \cdot 2 \pi$, proceeding counter-clockwise around the cake with each subsequent slice starting where the previous slice ended. For which $\alpha \in \mathbb{R}$ will this process eventually lead to the cake again having all its icing on the same side (up or down)? For which $\alpha \in \mathbb{R}$ will this process lead to the cake having all its icing facing down?
