Name: \qquad
Directions: Show all work. No credit for answers without work. Except when asked for an explicit numerical answer, you may leave answers in terms of binomial/multinomial coefficients, factorials, and sums with a small number of terms.

1. [$\mathbf{9}$ points] A committee of 5 people must be chosen from a group of 14 employees. How many ways can the committee be chosen? Give an explicit numerical answer.
2. [2 parts, 8 points each] A standard deck of cards has one card for each suit/rank pair, where the suits are spades, hearts, diamonds, and clubs, and the ranks are ace, 2 through 10 , jack, queen, and king.
(a) How many ways are there to choose a set of 5 cards from the deck with at least 2 clubs?
(b) The cards are shuffled and dealt to 4 people, with each person receiving 13 cards. What is the probability that each person's hand has exactly one king?
3. [3 parts, 6 points each] How many ways are there to arrange the letters in the word ENTENTE:
(a) without any restrictions?
(b) so that the E's are all next to each other (as in NTEEENT)?
(c) so that no two E's are consecutive?
4. [3 parts, $\mathbf{6}$ points each] Count the number of non-negative integer solutions to the following.
(a) $x_{1}+\ldots+x_{6}=30$
(b) $x_{1}+\ldots+x_{6}=30$, such that $x_{i} \geq i$ for $1 \leq i \leq 6$
(c) $x_{1}+\ldots+x_{6}=30$ such that $x_{i} \leq 20$ for each i.
5. [10 points] Give an algebraic and combinatorial proofs of the identity $t^{3}=6\binom{t}{3}+6\binom{t}{2}+\binom{t}{1}$.
6. [5 points] Use the identity in the previous problem to give a formula for $\sum_{t=1}^{n} t^{3}$. (Hint: an identity from HW10 may be helpful; it counts the number of $(k+1)$-element subsets of $[n+1]$ by grouping the subsets by maximum value.)
7. [8 points] Use the binomial theorem to find the coefficient of x^{7} in the expansion of $(x+1)^{20}$.
8. [2 parts, 8 points each] Find simple formulas for the following sums.
(a) $\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{2}\right)^{k}$
(b) $\sum_{k=0}^{n}\binom{n}{k} k 2^{k}$ (Hint: differentiate the binomial theorem expansion for $(x+1)^{n}$.)
