Name:
Solutions
Directions: Show all work. No credit for answers without work.

1. [15 points] Are the following graphs isomorphic? Either give an isomorphism or explain why not.

Yes, they are isomorphic. In addition to the edges of the green C_{8} subgraph, we have chords $v_{0} v_{3}, v_{4} v_{7}, v_{1} v_{6}$, ad $v_{2} v_{5}$.
2. [2 parts, $\mathbf{5}$ points each] For each of the following graphs, decide whether the graph is bipartite or not. If bipartite, then give a bipartition; otherwise, explain why the graph is not bipartite.

Bipartite with bipartitiai
$X=\left\{v_{0}, v_{2}, v_{4}, v_{6}, v_{8}\right\}$
$Y=\left\{v_{1}, v_{3}, v_{5}, v_{7}, v_{9}\right\}$
(b)

This graph has C_{5} as a subgraph:

$$
v_{0} v_{1} v_{2} v_{3} v_{4}
$$

A bipartituen would have to alternate parts along the cycle, which is not possible.
3. [$\mathbf{1 0}$ points] Let G_{n} be the graph whose vertices are the lattice points of an $n \times n$ grid, where two points are adjacent if and only if they are in the same row or in the same column. A copy of G_{3} appears below.

Find a formula for the number of edges in G_{n}.
Note: each vertex has degree $2(n-1)$

$$
\text { So }|E(G)|=\frac{1}{2} \sum_{v} \operatorname{deg}(v)=\frac{1}{2} \sum_{v} 2(n-1)=\frac{1}{R} \cdot n^{2} \cdot \chi(n-1)=n^{2}(n-1)
$$

4. [15 points] Recall that $K_{1,3}$ is the complete bipartite graph with one singleton part and another part with 3 vertices. Prove that $r\left(K_{1,3}, C_{4}\right)=6$. [Hint: use that $r\left(C_{4}, C_{4}\right)=6$.]
First, we shaw $K_{5} \rightarrow K_{1,3}, C_{4}$. We color K_{5} with two manochranatic 5-cyeles: The blue subgraph has no copy $d / K_{1,3}$ an the
has no copy of C_{4}. Therefore $r\left(K_{1,3}, C_{4}\right)>5$.

Next, we show $K_{6} \rightarrow K_{1,3}, C_{4}$. Let G be a blue/red edge-coloring of K_{6} and suppose for a contradiction that G has no blue copy of $K_{1,3}$ and no red copy of C_{4}. Since $r\left(C_{4}, C_{4}\right)=6_{1} \neq$ follows that G has a monochromatic copy of C_{4}, ad it must be in blue. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices ρ the blue 4-cycle, (and let w_{1}, w_{2} be the remaining vertices in G. If save edge $v_{i} \omega_{j}$ is blue, then $v_{i} \omega_{j}$ completes a blue copy of $K_{1,3}$ with center vertex v_{i}. So
all edges of the form $v_{i} w_{j}$ are red. But now we have red copies of C_{4}, such as $w_{1} v_{1} w_{2} v_{2}$. This is a contradiction and it follows that $r\left(k_{1}, 3, C_{4}\right) \leq 6$.
5. [3 parts, 10 points each] How many numbers in $\{1, \ldots, 700\}$:
(a) have only even digits?
note we allow zero
Let $U=\{x: 0 \leq x \leq 700$ ar all digits of x are even $\}$

1. Choose first digit from $\{0,2,4,6\}$ $n_{1}=4$
2. Choose second digit from $\{0,2,4,6,8\}$
$n_{2}=5$
3. Choose third digit fran $\{0,2,4,6,8\}$ $n_{3}=5$.
So $|u|=4 \cdot 5 \cdot 5=100$.
To get our set, we need to remove 0 (gaswated by 0 ○ 0). So $1 u \mid-1=99$.
(b) have 2 odd digits and 1 even digit?

Additar Rule:

So total number is $3\left(3 \cdot 5^{2}\right)=3^{2} \cdot 5^{2}=(15)^{2}=225$
(c) have no repeated digits? Use Additar Principle. Node: 700 not allowed

So total number is $9+81+432=522$
6. Suppose we roll a 6 -sided die n times. Let A_{n} be the event that we do not roll a pair of 6 's twice in a row.
(a) [15 points] Let $f(n)=\left|A_{n}\right|$. Find a recurrence relation for $f(n)$. Include necessary base cases.
Note: Sample space $S=[6]^{n}$ ar $A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S:\left(x_{1}, \ldots, x_{n}\right)\right.$ has no corse cotive 6 's $\}$.
$f(0)=1, f(1)=6$. Suppose $n \geq 2$. Let B_{n} be the sequences in A_{n} that end with a non- 6 value as let C_{n} be $\overline{x_{1}} \ldots \overline{x_{n-2}} \overline{x_{n-1}} \overline{x_{n}}$ the sequences in A_{n} that end in 6 . Sequences in B_{n}
have last entry in $\{1, \ldots, 5\}$ appended to a sequence in A_{n-1}. Mare aver, apposing a value from $\{1, \ldots, 5\}$ to a sequence in A_{n-1} gives a sequence in B_{n}. So $\left|B_{n}\right|=5\left|A_{n-1}\right|$ $=5 f(n-1)$. Similarly, a sequence in C_{n} has a last value of 6 appeared to a sequence in B_{n-1}. So $\left|C_{n}\right|=\left|B_{n-1}\right|=5\left|A_{n-2}\right|=5 \mathrm{f}(n-2)$. We have $f(n)=\left|A_{n}\right|+\left|B_{n}\right|$

$$
=5 f(n-1)+5 f(n-2) \text { for } n \geq 2
$$

(b) [5 points] Use your recurrence in part (a) to find the probability of not getting 6 's twice in a row when rolling a die 4 times.
Fran part (a), $\quad f(n)= \begin{cases}1 & \text { if } n=0 \\ 6 & \text { if } n=1 \\ 5(f(n-1)+f(n-2)) & \text { if } n \geq 2\end{cases}$

$$
\begin{aligned}
& \\
& =5(240) \\
& \text { So probability is } \frac{\left|A_{4}\right|}{|S|}=\frac{f(4)}{6^{4}}=\frac{1200}{6^{4}}=\frac{12 \cdot(10)^{2}}{6^{4}}=\frac{2 \cdot(10)^{2}}{6^{3}}=\frac{2 \cdot 2^{2} \cdot 5^{2}}{6^{3}} \\
& =\frac{2^{3} \cdot 5^{2}}{2^{3} \cdot 3^{3}}=\frac{25}{27} \approx 0.9259
\end{aligned}
$$

