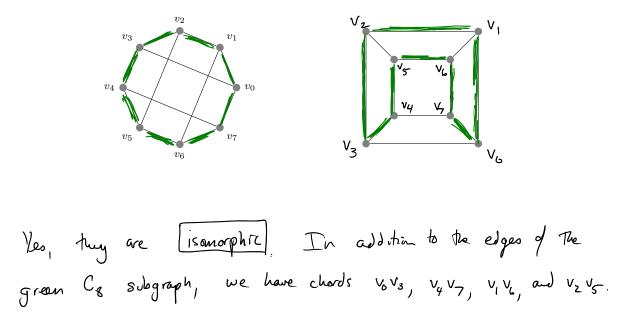
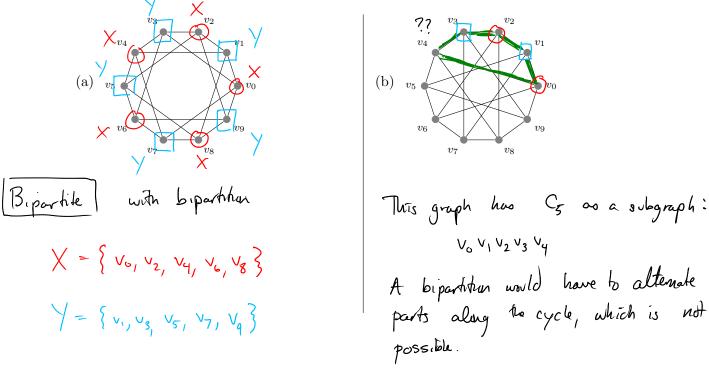


Directions: Show all work. No credit for answers without work.

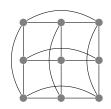
1. **[15 points]** Are the following graphs isomorphic? Either give an isomorphism or explain why not.



2. [2 parts, 5 points each] For each of the following graphs, decide whether the graph is bipartite or not. If bipartite, then give a bipartition; otherwise, explain why the graph is not bipartite.



3. [10 points] Let G_n be the graph whose vertices are the lattice points of an $n \times n$ grid, where two points are adjacent if and only if they are in the same row or in the same column. A copy of G_3 appears below.



Find a formula for the number of edges in G_n .

Note: each vertex has degree 2(n-1)So $|E(G)| = \frac{1}{2} \sum_{v} deg(v) = \frac{1}{2} \sum_{v} 2(n-1) = \frac{1}{2} \cdot n^2 \cdot 2(n-1) = \left[n^2(n-1)\right]$

4. [15 points] Recall that $K_{1,3}$ is the complete bipartite graph with one singleton part and another part with 3 vertices. Prove that $r(K_{1,3}, C_4) = 6$. [Hint: use that $r(C_4, C_4) = 6$.]

First, we show
$$K_5 \not\prec K_{1,3}$$
, C_9 . We color K_5 with two monochromatic 5-cycles:
The blue subgraph has no copy of $K_{1,3}$ as the red subgraph
has no copy of C_9 . Therefore $r(K_{1,3}, C_9) > 5$.
Next, we show $K_6 \rightarrow K_{1,3}$, C_9 . Let G be a blue/red edge-coloring of K_6
and suppose for a contradiction that G has no blue copy of $K_{1,3}$ and no
red copy of C_9 . Since $r(C_9, C_9) = 6$, $\#$ follows that G has a monochromatic
copy of C_9 , as it must be in blue. Let v_1, v_2, v_3, v_4 be the vertices of the blue $4 - cycle$,
 V_9
 v_1 and let w_1, w_2 be the remaining vertices in G.
 V_1 V_2 V_3 V_4 V_5 V_5 .
a blue copy of $K_{1,3}$ with center vertex v_5 . So
all edges of the form $v_5 w_3$ are ved. Bot now we have red copies of C_9 , C_9 ,

U

5. [3 parts, 10 points each] How many numbers in $\{1, \dots, 700\}$: (a) have only even digits? Note we allow zero Let $U = \{x : 0 \in x \in 700 \text{ or all digits } 4 \times \text{ are even } \}$ (3) digits, leading zeros allowed]1. Choose first digit from $\{0, 2, 4, 6, 8\}$ $n_{i} = 4$ 2. Choose second digit from $\{0, 2, 4, 6, 8\}$ $n_{2} = 5$ 3. Choose third digit from $\{0, 2, 4, 6, 8\}$ $n_{3} = 5$. So $|U| = 4.5 \circ 5 = 100$. To get our set, we need to remove O (gaunated by $O \odot \odot$). So $huf_{i} = [79]$. (b) have 2 odd digits and 1 even digit? Note: 700 and 000 both not allowed. Addition Rule:

So total number is 9+81+432 = 522

 \times_{l}

- 6. Suppose we roll a 6-sided die n times. Let A_n be the event that we do not roll a pair of 6's twice in a row.
 - (a) [15 points] Let $f(n) = |A_n|$. Find a recurrence relation for f(n). Include necessary base cases.

Note: Sample space
$$S = [6]^n$$
 and $A_n = \{(x_1, ..., x_n) \in S : (x_1, ..., x_n) has no concecutive $6's \}$$

$$f(0) = 1$$
, $f(1) = 6$. Suppose $n = 2$. Let B_n be the sequences in A_n
that end with a non-6 value all let C_n be
 $x_{n-2} - x_{n-1} - x_n$ the sequences in A_n that end in 6. Sequences in B_n

have last entry in $\xi_{1,...,5}$ appended to a sequence in A_{n-1} . More aver, appending a value from $\xi_{1,...,5}$ to a sequence in A_{n-1} gives a sequence in B_n . So $|B_n| = 5|A_{n-1}|$ = 5 f(n-1). Similarly, a sequence in Cn has a last value of 6 appended to a sequence in B_{n-1} . So $|C_n| = |B_{n-1}| = 5|A_{n-2}| = 5f(n-2)$. We have $f(n) = |A_n| + |B_n| = 5f(n-1) + 5f(n-2)$ for $n \ge 2$

(b) [5 points] Use your recurrence in part (a) to find the probability of not getting 6's twice in a row when rolling a die 4 times.

From part (a),
$$f(n) = \begin{cases} l & f(n-1) \\ 5(f(n-1) + f(n-2)) & f(n-2) \end{cases}$$

So probability is
$$\frac{|A_4|}{|S|} = \frac{f(4)}{6^4} = \frac{1200}{6^4} = \frac{12 \cdot (10)^2}{6^4} = \frac{2 \cdot (10)^2}{6^3} = \frac{2 \cdot 2^2 \cdot 5^2}{6^3}$$
$$= \frac{2^3 \cdot 5^2}{2^3 \cdot 3^3} = \left[\frac{25}{27}\right] \approx 0.9259$$