Directions: Show all work. No credit for answers without work.

1. [18 points] Prove that if $n \geq 0$, then $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.

By induction ar n. If $n=0$, then the LHS is an empty som, giving 0 , and the RHS is $\frac{0(0+1)}{2}$, which also equals 0 .

Suppose $n \geq 1$. By the induction hypothes is, we have

$$
\sum_{k=1}^{n-1} k=\frac{(n-1) n}{2}
$$

Adding n to both sides gives

$$
\sum_{k=1}^{n} k=\frac{(n-1) n}{2}+n=\frac{(n-1) n+2 n}{2}=\frac{n(n+1)}{2}
$$

and so the identity holds at n.
2. [18 points] Prove that $\sum_{k=1}^{n} 2^{k-1} 3^{n-k}=3^{n}-2^{n}$ for $n \geq 0$ using the no minimum counterexample method.

Suppose for a contradiction that the claim is false, and let n be the least non-negative integer for which the claim fails. Since

$$
\sum_{k=1}^{0} 2^{k-1} 3^{n-k}=0=3^{0}-2^{0}
$$

we have $n \geq 1$. Since $n-1 \geq 0$ and n is the min integer for which the claim fails, follows that the claim holds at $n-1$:

$$
\begin{equation*}
\sum_{k=1}^{n-1} 2^{k-1} 3^{(n-1)-k}=3^{n-1}-2^{n-1} \tag{*}
\end{equation*}
$$

Multiplying both sides $\delta(*)$ by 3 gives $\sum_{k=1}^{n-1} 2^{k-1} 3^{n-k}=3^{n}-3 \cdot 2^{n-1}$ and adding the $k=n \operatorname{tem} 2^{n-1} \cdot 3^{n-n}$ or 2^{n-1} to both sides gives

$$
\sum_{k=1}^{n} 2^{k-1} 3^{n-k}=3^{n}-3 \cdot 2^{n-1}+2^{n-1}=3^{n}-2 \cdot 2^{n-1}=3^{n}-2^{n}
$$

Therefore the claim holds at n afterall, and we have a contradiction.
3. Let $a_{1}=\frac{1}{2}$ and $a_{n}=\frac{1}{2-a_{n-1}}$ for $n \geq 2$.
(a) $[14$ points $]$ Compute a_{n} for $n \leq 4$. Guess a formula for a_{n}.
$a_{1}=\frac{1}{2}$

$$
a_{2}=\frac{1}{2-\frac{1}{2}}=\frac{1}{\frac{3}{2}}=\frac{2}{3}
$$

$$
\begin{aligned}
& a_{3}=\frac{1}{2-\frac{2}{3}}=\frac{3}{3 \cdot 2-2}=\frac{3}{6-2}=\frac{3}{4} \\
& a_{4}=\frac{1}{2-\frac{3}{4}}=\frac{4}{4.2-3}=\frac{4}{8-3}=\frac{4}{5}
\end{aligned}
$$

Guess: $a_{n}=\frac{n}{n+1}$.
(b) [18 points] Prove that your formula is correct.

We prove $a_{n}=\frac{n}{n+1}$ by induction on n. If $n=1$, then $a_{1}=\frac{1}{2}$ from the base case of the recurrence and $\frac{n}{n+1}=\frac{1}{1+1}=\frac{1}{2}$, and so the formula holds.

Suppose that $n \geq 2$. By definition, we have $a_{n}=\frac{1}{2-a_{n-1}}$.
By the Itt we have $a_{n-1}=\frac{n-1}{(n-1)+1}=\frac{n-1}{n}$. Therefore

$$
a_{n}=\frac{1}{2-a_{n-1}}=\frac{1}{2-\frac{n-1}{n}}=\frac{n}{2 n-(n-1)}=\frac{n}{2 n-n+1}=\frac{n}{n+1}
$$

and so the formula for a_{n} also holds at n.
4. [14 points] For $n \geq 1$, let b_{n} be the number of ways to mark zero or more cells of a $(2 \times n)$ grid so that no two marked cells are next to each other vertically, horizontally, or diagonally. For example, $b_{3}=11$, as shown below.

Give a recurrence relation for b_{n}, complete with all necessary base cases. (No need to guess a formula for b_{n} or solve.)

5. [18 points] Let S be a subset of $\{1, \ldots, n\}$ with $|S|=m$. Prove that if $m>1+(n / 2)$, then there exist distinct $x, y, z \in S$ such that $x+y=z$. (Hint: let $S=\left\{a_{1}, \ldots, a_{m}\right\}$ with $a_{1}<$ $\cdots<a_{m}$, and let $k=a_{1}$, the smallest integer in S. Consider the list $a_{2}, \ldots, a_{m}, b_{2}, \ldots, b_{m}$, where $b_{i}=a_{i}+k$.)

Let $S=\left\{a_{1}, \ldots, a_{m}\right\}$ with $a_{1}<\cdots<a_{m}$ and $k=a_{1}$ as suggested.
We set $b_{i}=a_{i}+k$ for $2 \leqslant i \leqslant m$. Note twat

$$
k+1 \leqslant a_{2}, \ldots, a_{m}, b_{2}, \ldots, b_{m} \leq n+k
$$

and so $a_{2}, \ldots, a_{m}, b_{2}, \ldots, b_{m}$ is a list of $2(m-1)$ integers in a range of size $(n+k)-k$ or n. Since $2(m-1)>2\left(\frac{n}{2}\right)=n$, it follows that two distinct entries in the list are the same. If is impossible for $a_{i}=a_{j}$ with $i \neq j$, and also impossible for $b_{i}=b_{j}$ with it since $b_{2}<\cdots<b_{m}$. Therefore $a_{i}=b_{j}$ for distinct i and.

We have $a_{i}=b_{j}=a_{j}+k=a_{j}+a_{1}$ with $1<j<i$. Hence we have the desired $x, y, z \in S$ with $x=a_{1}, y=a_{j}$, ad $z=a_{i}$.

