Name: _ Soltias

Directions: Show all work.

1. [3 points] A store sells packs of light bulbs in colors red, blue, green, purple, orange, and white. How many ways are there to purchase 8 packs of light bulbs?

2. [4 points] How many integer solutions are there to $x_1 + x_2 + x_3 = 50$ such that $x_1 \ge 4$, $x_2 \ge -8$, and $x_3 \ge 0$?

$$\hat{x}_{1} = x_{1} - 4$$
 $\hat{x}_{1} + x_{2} + x_{3} = 50$
 $\hat{x}_{2} = x_{2} + 8$
 $\hat{x}_{1} + \hat{x}_{2} + \hat{x}_{3} = 50$
 $\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3} \ge 0$
 $\hat{x}_{3} = x_{3}$
 $\hat{x}_{1} + \hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{1} + \hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{3} = x_{3}$
 $\hat{x}_{4} + \hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{5} = x_{2} + 8$
 $\hat{x}_{1} + \hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{3} = x_{3} = 54$
 $\hat{x}_{4} + \hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{5} = x_{2} + 8$
 $\hat{x}_{1} + \hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{2} + \hat{x}_{3} = 54$
 $\hat{x}_{3} = x_{3} = x_{3}$

3. [3 points] How many ways are there to choose 3 integers from $\{1, \ldots, 20\}$ if every chosen integer must be at most distance 9 from some other chosen integer? For example, $\{3, 12, 17\}$ works since $|12 - 3| \le 9$ and $|17 - 12| \le 9$, but $\{3, 13, 17\}$ does not since |13 - 3| = 10 > 9.

Let
$$\times_1$$
, \times_2 , \times_3 , \times_4 describe the number of integers before after chosen integers.

We want to court $\#$ solns to

 $X_1 + X_2 + X_3 + X_4 = 17$, X_2 , $X_3 = 8$

We all solus to $X_1 + \dots + X_4 = 17$; $X_1 + X_2 + \dots + X_4 = 17$; $X_2 + \dots + X_4 = 8$

We all solus to $X_1 + \dots + X_4 = 17$; $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 17$; $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 17$; $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + X_2 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 $X_1 + \dots + X_4 = 8$
 $X_2 + \dots + X_4 = 8$
 X