Name:
Solutions
Directions: Show all work.

1. [3 points] How many ways are there to shuffle a standard 52 -card playing deck so that all spades are consecutive?
2. Choose order for the 13 spades:

13! options
2. Arrange the 39-non spades

39! options
3. In are of the 40 available

40 options spaces, insert the spades

Total: $13!\cdot 39!\cdot 40$ or $40!\cdot 23$!
2. [$\mathbf{3}$ points] How many (8×8)-matrices are there such that each entry is a zero or a one, and each row has exactly 3 ones?

- Ir each row, we have $\binom{8}{3}$ options
- For $1 \leq i \leq 8$, in stage i, we choose
$\binom{8}{3}$ options, each stage 3 positions to have value ore

Since we have 8 stages, the total nim is $\binom{8}{3}^{8}$
3. [4 points] Suppose $\begin{gathered}n \geq 3 \\ n \geq 2\end{gathered}$. How many circular arrangements of $\{1, \ldots, n\}$ are there if 1 and n are not allowed to be consecutive? If a circular arrangement is chosen at random, what is the probability that 1 and n are not consecutive?
Let U be the set of all circular arrangements; we know $|U|=\frac{n!}{n}=(n-1)$!
Let A be the set of arrangemats in U with 1 at n net consecutive,
So that \bar{A} is the set of circular arrangemats with 1 and n ansecctive.
To count \bar{A}, first give a circular arrangement of $\{2, \ldots, n-1\} \quad((n-3)$! options) and then insert $[1 n]$ or $[n 1]$ in one of the $n-2$ gaps ($2(n-2)$ prions).

$$
\text { So }|\bar{A}|=(n-3)!\cdot 2(n-2)=2(n-2)!\text { an }|A|=|U|-|\bar{A}|=(n-1)!-2(n-2)!=(n-1)(n-2)!-2(n-2)!
$$ $=(n-3)(n-2)!$. The probability is $\frac{(n-3)(n-2)!}{(n-1)!}=\frac{n-3}{n-1}=1-\frac{2}{n-1}$.

