n: 6

• 3

Directions: Show all work.

- 1. [3 points] How many ways are there to shuffle a standard 52-card playing deck so that all spades are consecutive?
 - 1. Choose order for the 13 spades: 13! options
 - 2. Avrange the 39-non spades 39! options
 - 3. In one of the 40 available 40 options spaces, insert the spades <u>f Ci f Ci - f Ci J</u> 40 insertion points 70tal: 13:.39!.40 or [40!..23!]
- 2. [3 points] How many (8×8) -matrices are there such that each entry is a zero or a one, and each row has exactly 3 ones?

In each row, we have (⁸/₃) options
For 1 = i = 8, in stage i, we choose (⁸/₃) options, each stage 3 positions to have value one

Since we have
$$8$$
 stages, the total num is $\left[\binom{-8}{3}^{8}\right]$.

3. [4 points] Suppose $n \ge 2$. How many circular arrangements of $\{1, \ldots, n\}$ are there if 1 and n are not allowed to be consecutive? If a circular arrangement is chosen at random, what is the probability that 1 and n are not consecutive?

Let U be the set of all circular arrangements; we know
$$|\mathcal{U}| = \frac{n!}{n} = (n-1)!$$

(et A be the set of arrangements in U with 1 and n net consecutive,
so that \overline{A} is the set of circular arrangements with 1 and n ansecutive.
To count \overline{A} , first give a circular arrangement of $\{2, ..., n-1\}$ ((n-3)! options)
and then insert [1 n] or (n 1] in one of the n-2 gaps (2(n-2) options).
So $|\overline{A}| = (n-3)! \cdot 2(n-2) = 2(n-2)!$ and $|A| = |\mathcal{U}| - |\overline{A}| = (n-1)! - 2(n-2)! = (n-1)(n-2)! - 2(n-2)!$