Solutions
Directions: Show all work.

1. Graph Ramsey Numbers.
(a) [3 points] Prove that $r\left(P_{4}, C_{4}\right)>4$.

We give a blue(dashed)/red(solid) edge-coloring of K_{4} with no blue P_{4} and no red C_{4} :

(b) [4 points] Prove that $r\left(P_{4}, C_{4}\right) \leq 5$.

We show $K_{5} \rightarrow P_{4}, C_{4}$. Let G be a blue/red adge-coloning of K_{5}. If G has no blue edges, then we easily find a red C_{4}. let P be a blue path in G of maximum length. If P has at least 4 vertios, then we have a blue C_{4}. Otherwise $2 \leq|v(P)| \leq 3$. Let u ant v be the endpoints of P, ad let x and y be 2 vertices in G that are not on P :

Note that $x u$ and gu must be red, or else P extends to a longer blue path. Similarly, $v x$ and vy must also be red. But now by $\vee x$ forms a red 4 -cycle.
2. [3 points] Using that $r(3,4)=9$ and $r(3,3,3)=17$, apply the multicolor Ramsey Theorem to give an upper bound on $r(3,3,4)$.
Fran class, $r\left(n_{1}, \ldots, n_{k}\right) \leq 2+\sum_{i=1}^{k}\left(r\left(n_{1}, \ldots, n_{1-1}, n_{i}-1, n_{i+1}, \ldots, n_{k}\right)-1\right)$. Therefore

$$
\begin{aligned}
r(3,3,4) & \leq 2+(r(2,3,4)-1)+(r(3,2,4)-1)+(r(3,3,3)-1) \\
& =-1+2 r(2,3,4)+r(3,3,3)=-1+2 r(3,4)+r(3,3,3) \\
& =-1+2 \cdot 9+17=-1+18+17=17+17=34
\end{aligned}
$$

