Name: Solutions

Directions: Show all work.

- 1. [2 parts, 4 points each] Lists and monotone subsequences.
 - (a) Give a list of 15 distinct integers that has no increasing subsequence of size 4 and no decreasing subsequence of size 6.

(b) Prove that every list of 16 distinct integers either contains an increasing subsequence of size 4 or a decreasing subsequence of size 6.

Let $a_{ij}...,a_{ib}$ be a list of district integers. For $1 \le i \le 16$, let $i_1 = \max_i s_i \ge d$ on increasing subsequence ending at a_i $s_i = \max_i s_i \ge d$ a decreasing subsequence ending at a_i .

Note that $\Gamma_i \geq 1$ and $S_i \geq 1$ for each i. Sprose for a contradiction that $\Gamma_i \leq 3$ and $S_i \leq 5$ for each i. Since $(\Gamma_i, S_i), ..., (\Gamma_k, S_{1k})$ is a list of 16 ordered pairs, each of which belongs to $\{1,2,3\} \times \{1,2,3,4,5\}$ (a set of size 15), by the pigeonhole principle there exists i and j with $1 \leq i < j \leq 16$ such that $(\Gamma_i, S_i) = (\Gamma_j, S_j)$. But this is impossible: if $\alpha_i < \alpha_j$, then $\Gamma_j \geq \Gamma_i + 1$ and if $\alpha_i > \alpha_j$, then $S_j \geq S_i + 1$. Therefore some Γ_i is at

2. [2 points] How many edges are in K_6 , the complete graph on 6 vertices?

 K_1 K_2 K_3 K_4 K_5 K_6 K_8 K_9 K_9

So K₆ has 1+2+3+4+5 or 15 edges

Alterative Soln: $\sum_{v \in V(K_c)} d(v) = 2|E(K_c)|$ $6 \cdot 5 = 2|E(K_c)|$ $|E(K_c)| = \frac{6.5}{2} = \frac{15}{15}$