\qquad Solutions
Directions: Show all work.

1. [2 parts, 4 points each] Lists and monotone subsequences.
(a) Give a list of 15 distinct integers that has no increasing subsequence of size 4 and no decreasing subsequence of size 6 .

$$
\frac{5,4,3,2,1,10,9,8,7,6,15,14,13,12,11}{13,14,15,10,11,12,7,8,9,4,5,6,1,2,3}
$$

(b) Prove that every list of 16 distinct integers either contains an increasing subsequence of size 4 or a decreasing subsequence of size 6 .
Let $a_{1, \ldots, a_{1 b}}$ be a list of distinct integers. For $1 \leq i \leq 16$, let
$r_{i}=\max$ size of anincreasing subsequence ending at a_{i}
$S_{i}=\max$ size of a decreasing subsequence ending at a_{i}.
Note that $r_{i} \geq 1$ and $s_{i} \geq 1$ for each i_{1} Suppose for a contradiction that $r_{i} \leq 3$ and $s_{i} \leq 5$ for each i. Since $\left(r_{1}, s_{1}\right), \ldots,\left(r_{16}, S_{16}\right)$ is a list of 16 ordered pairs, each of which belongs to $\{1,2,3\} \times\{1,2,3,4,5\}$ (a set d size 15), by the pigeonhole principle there exists i and j with $1 \leq i<j \leq 16$ such that $\left(r_{i}, s_{i}\right)=\left(r_{j}, s_{j}\right)$. But this is impossible: if $a_{i}<a_{j}$, then $r_{j} \geq r_{i}+1$ and if $a_{i}>a_{j 1}$ then $S_{j} \geq S_{i}+1$. Thenefine save r_{i} is at 2. [$\mathbf{2}$ points] How many edges are in K_{6}, the complete graph on 6 vertices? least 4 or some S_{i} is at least 6 .

$$
\text { So } K_{6} \text { has } 1+2+3+4+5 \text { or } 15 \text { edges. }
$$

Alternative Son:

$$
\begin{aligned}
& \sum_{v \in V\left(K_{6}\right)} d(v)=2\left|E\left(K_{6}\right)\right| \\
& 6 \cdot 5=2\left|E\left(K_{6}\right)\right| \\
& \left|E\left(K_{6}\right)\right|=\frac{6.5}{2}=15
\end{aligned}
$$

