Directions: Show all work.

1. [5 points] Let $a_0 = 2$ and $a_n = 2a_{n-1} - n$ for $n \ge 1$. Guess a formula for a_n and prove your formula is correct.

First few values:
$$\frac{n 0 1 2 3 4 5}{a_n 2 3 22 2 2 3 - 2 2 2 - 1 - 3 2 - 5 - 4 2 - 6 - 5} \quad (suess: a_n = n + 2)$$

We prove $a_n = n+2$ by induction on n. If n=0, then $a_0 = 2$ and n+2 also evaluates to 2, so the formula holds of n=0.

Suppose $n \ge 1$. By definition, $a_n = 2a_{n-1} - n$. By the inductive hypothesis, we have $a_{n-1} = (n-1)+2 = n+1$. Substituting for a_{n-1} gives $a_n = 2a_{n-1} - n = 2(n+1) - n = 2n+2 - n = n+2$

and it follows that the formula holds at n also.

2. [5 points] Let $b_0 = 3$ and $b_n = 2b_{n-1} - n$ for $n \ge 1$. Prove that $b_n = 2^n + n + 2$.

By induction on n. If n=0, then $b_0=3$ and $2^n+n+2=1+0+2=3$, and so the formula holds at n=0. Suppose $n\ge 1$. By definition we have $b_n=2b_{n-1}-n$ and by I.H. we have $b_{n-1}=2^{n-1}+(n-1)+2$.

Combining these gives

$$b_{n} = 2b_{n-1} - n = 2\left[2^{n-1} + (n-1) + 2\right] - n$$

$$= 2\left[2^{n-1} + n + 1\right] - n$$

$$= 2^{n} + 2n + 2 - n$$

$$= 2^{n} + n + 2$$
and therefore the formula holds at n also. Effectively and the efformula holds at n also.