Name: Solutions
Directions: Show all work.

1. [5 points] Let $a_{0}=2$ and $a_{n}=2 a_{n-1}-n$ for $n \geq 1$. Guess a formula for a_{n} and prove your formula is correct.
First few values:

n	0	1	2	3	4	5
a_{n}	2	3	4	5	6	7

We prove $a_{n}=n+2$ by induction on n. If $n=0$, then $a_{0}=2$ ad $n+2$ also evaluates to 2 , so the formula holds at $n=0$.

Suppose $n \geq 1$. By definition, $a_{n}=2 a_{n-1}-n$. By the inductive hypothesis, we have $a_{n-1}=(n-1)+2=n+1$. Substituting for a_{n-1} gives

$$
a_{n}=2 a_{n-1}-n=2(n+1)-n=2 n+2-n=n+2
$$

and it follows that the formula holds at n also.
2. [5 points] Let $b_{0}=3$ and $b_{n}=2 b_{n-1}-n$ for $n \geq 1$. Prove that $b_{n}=2^{n}+n+2$.

By induction on n. If $n=0$, then $b_{0}=3$ ad $2^{n}+n+2=1+0+2=3$, and so the formula holds at $n=0$. Suppose $n \geq 1$. By definition we have $b_{n}=2 b_{n-1}-n$ and by I.H. we have $b_{n-1}=2^{n-1}+(n-1)+2$.

Combining there gives

$$
\begin{aligned}
b_{n}=2 b_{n-1}-n & =2\left[2^{n-1}+(n-1)+2\right]-n \\
& =2\left[2^{n-1}+n+1\right]-n \\
& =2^{n}+2 n+2-n \\
& =2^{n}+n+2
\end{aligned}
$$

and therefore the formula hods at n also.

