Name: Solctrais
Directions: Show all work.

1. [3 points] Suppose that $A(x)=\frac{1}{(1-2 x)^{8}}$. What is the coefficient of x^{12} in $A(x)$?

$$
A(x)=\sum_{n \geq 0}(2 x)^{n}=\sum_{n \geq 0}\binom{n+7}{7}(2 x)^{n}=\sum_{n \geq 0}\binom{n+7}{7} \cdot 2^{n} \cdot x^{n}
$$

Hsolns to $x_{1}+\cdots+x_{8}=n \quad$ So coff. fo x^{12} is $\binom{12+7}{7} \cdot 2^{12}=$
s] Suppose that $\left(a_{n}\right)_{n \geq 0}$ has OGF $A(x)=\frac{1}{(1-2 x)(1-3 x)}$. Find a formula for a_{n}.

$$
\begin{aligned}
& \frac{1}{(1-2 x)(1-3 x)}=\frac{A}{1-2 x}+\frac{B}{1-3 x} \Rightarrow A(1-3 x)+B(1-2 x)=1 \\
& X=\frac{1}{3}: \quad B\left(1-\frac{2}{3}\right)=1, \quad B\left(\frac{1}{3}\right)=1, \quad B=3 \\
& x=\frac{1}{2}: \quad A\left(1-\frac{3}{2}\right)=1, \quad A\left(-\frac{1}{2}\right)=1, \quad A=-2 \\
& \text { So } A(x)=(-2) \cdot \frac{1}{1-2 x}+(3) \cdot \frac{1}{1-3 x}=-2 \sum_{n \geq 0}(2 x)^{n}+3 \sum_{n \geq 0}(3 x)^{n} \\
& \text { So } a_{n}=\text { conf of } x^{n} \text { in } A(x)=-2 \cdot 2^{n}+3 \cdot 3^{n}=3^{n+1}-2^{n+1} \\
& \text { 3. [} \mathbf{3} \text { points] Let } a_{0}=2, a_{1}=1 \text {, and } a_{n}=3 a_{n-1}+a_{n-2}+2^{n} \text { for } n \geq 2 \text {. Find the OGF } A(x) \text {. } \\
& \sum_{n=2} a_{n} x^{n}=3 \sum_{n \geq 2} a_{n-1} x^{n}+\sum_{n \geq 2} a_{n-2} x^{n}+\sum_{n \geq 2} 2^{n} x^{n} \\
& A(x)-2-1 x=3 x \sum_{n \geq 2} a_{n-1} x^{n-1}+x^{2} \sum_{n \geq 2} a_{n-2} x^{n-2}+\left(\sum_{n \geq 0}(2 x)^{n}-1-2 x\right) \\
& A(x)-2-x=3 x(A(x)-2)+x^{2} A(x)+\frac{1}{1-2 x}-1-2 x \\
& A(x)-2-x=3 x A(x)-6 x+x^{2} A(x)+\frac{1}{1-2 x}-1-2 x \\
& {\left[1-3 x-x^{2}\right] A(x)=2+x-6 x+\frac{1}{1-2 x}-1-2 x} \\
& {\left[1-3 x-x^{2}\right] A(x)=1-7 x+\frac{1}{1-2 x}} \\
& A(x)=\frac{1-7 x}{1-3 x-x^{2}}+\frac{1}{(1-2 x)\left(1-3 x-x^{2}\right)}=\frac{(1-7 x)(1-2 x)+1}{(1-2 x)\left(1-3 x-x^{2}\right)}=\frac{2-9 x+14 x^{2}}{(1-2 x)\left(1-3 x-x^{2}\right)}
\end{aligned}
$$

