Directions: Show all work.

- 1. [5 points] Prove for $n \ge 0$, we have $\sum_{k=0}^{n} k2^k = (n-1)2^{n+1} + 2$.
- By induction on n. If n=0, then the LHS is 0.2° , or 0. The RHS is (-1)2 + 2, which also equals zero.

Suppose that
$$n \ge 1$$
. By the induction hypothesis, we have

$$\sum_{k=0}^{n-1} k 2^{k} = ((n-1)-1)2^{(n-1)+1} + 2 = (n-2)2^{n} + 2.$$

Adding
$$n 2^n$$
 to both sides gives

$$\sum_{k=0}^{n} k 2^k = (n-2)2^n + 2 + n \cdot 2^n = (2n-2) \cdot 2^n + 2 = (n-1)2^{n+1} + 2$$
IF follows that the identity holds at n .

2. [5 points] Prove that for each integer n with $n \ge 2$, we have that $2^n + 3^n < 4^n$.

By induction on n. If
$$n=2$$
, then we have $2^2 + 3^2 = 4+9 = 13 < 16 = 4^2$,
and so the inequality holds.
Suppose $n=3$. By the induction hypothesis, we have that $4^{n-1} > 2^{n-1} + 3^{n-1}$.
Multiplying both sides by 4 gives
 $4^n > 4 \cdot 2^{n-1} + 4 \cdot 3^{n-1}$
 $> 2 \cdot 2^{n-1} + 3 \cdot 3^{n-1}$
 $= 2^n + 3^n$

IF follows that the inequality also holds at n.