Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. How many ways are there to arrange the letters of MISSISSIPPI:
 - (a) with no additional restrictions?
 - (b) [4.3.7] if all four S's cannot appear consecutively?
 - (c) if no two S's can appear consecutively?
- 2. [4.4.2] I want to buy exactly 10 jars of various herbs and spices, and I am only interested in Cinnamon, Curry, Cumin, Caraway, Coriander, and Chervil. The supermarket has plenty of each. How many different combinations are possible?
- 3. $[4.4.\{8-11\}]$ Solutions to equations.
 - (a) Count the integral solutions to $x_1 + x_2 + x_3 + x_4 = 30$ with $x_1 \ge 2$, $x_2 \ge 0$, $x_3 \ge -5$, and $x_4 \ge 8$.
 - (b) Count the integral solutions to $x_1 + \cdots + x_5 = 47$ with $5 \le x_i \le 30$ for each *i*.
 - (c) How many non-negative integer solutions are there to $x_1 + \cdots + x_8 = 47$, where exactly three of the variables are equal to zero? What if we wanted at least three variables equal to zero?
 - (d) Find the number of non-negative integer solutions to $x_1 + \cdots + x_7 \leq 47$.
- 4. How many ways are there to form a subset of [n] of size k with the property that each selected number is at distance at least 3 from every other selected number? For example, if n = 8 and k = 3 there are 4 ways: $\{1, 4, 7\}, \{1, 4, 8\}, \{1, 5, 8\}$, and $\{2, 5, 8\}$.
- 5. [5.1.5] Let $c \leq b \leq a$ be non-negative integers. Give two proofs, one combinatorial, for $\binom{a}{b}\binom{b}{c} = \binom{a}{c}\binom{a-c}{b-c}$.