Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. How many ways are there to arrange the letters of MISSISSIPPI:
(a) with no additional restrictions?
(b) [4.3.7] if all four S's cannot appear consecutively?
(c) if no two S's can appear consecutively?
2. [4.4.2] I want to buy exactly 10 jars of various herbs and spices, and I am only interested in Cinnamon, Curry, Cumin, Caraway, Coriander, and Chervil. The supermarket has plenty of each. How many different combinations are possible?
3. [4.4. $\{8-11\}]$ Solutions to equations.
(a) Count the integral solutions to $x_{1}+x_{2}+x_{3}+x_{4}=30$ with $x_{1} \geq 2, x_{2} \geq 0, x_{3} \geq-5$, and $x_{4} \geq 8$.
(b) Count the integral solutions to $x_{1}+\cdots+x_{5}=47$ with $5 \leq x_{i} \leq 30$ for each i.
(c) How many non-negative integer solutions are there to $x_{1}+\cdots+x_{8}=47$, where exactly three of the variables are equal to zero? What if we wanted at least three variables equal to zero?
(d) Find the number of non-negative integer solutions to $x_{1}+\cdots+x_{7} \leq 47$.
4. How many ways are there to form a subset of $[n]$ of size k with the property that each selected number is at distance at least 3 from every other selected number? For example, if $n=8$ and $k=3$ there are 4 ways: $\{1,4,7\},\{1,4,8\},\{1,5,8\}$, and $\{2,5,8\}$.
5. [5.1.5] Let $c \leq b \leq a$ be non-negative integers. Give two proofs, one combinatorial, for $\binom{a}{b}\binom{b}{c}=\binom{a}{c}\binom{a-c}{b-c}$.
