Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [3.1.6] How many odd five-digit integers start with an even digit?
2. [3.1.8] Count the functions $f:\{1, \ldots, 7\} \rightarrow\{1,2,3,4\}$.
3. [3.1.14] How many ways are there to color the vertices of a pentagon with three colors such that no two adjacent vertices receive the same color?
4. [3.2.3] You roll a regular six-sided die twice.
(a) What is the probability that you roll five twice?
(b) If you roll a five the first time, then what is the probability that you also roll a five on the second try?
(c) If all we know is that at least one of your rolls was a five, then what is the probability that you rolled five twice?
5. Suppose each integer in $[n]$ is colored red, yellow, or green at random.
(a) What is the probability that no consecutive integers get the same color?
(b) Let a_{n} be the number of colorings where red never immediately follows green. For example, $a_{0}=1$ (since the null coloring counts), $a_{1}=3$, and $a_{2}=9-1=8$ (since 'GR' is the only disallowed coloring). Prove that $a_{n}=3 a_{n-1}-a_{n-2}$ for $n \geq 2$.
(c) Find a recurrence for p_{n}, the probability that red never immediately follows green. What is the smallest n for which this probability is less than $1 / 2$?
