Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [2.3.14] In class, we showed that $r(3,3,3) \leq 17$. What upper bound do our techniques give on $r(3,3,3,3)$?
2. Find $r\left(C_{3}, C_{4}\right)$.
3. Here, we show that $r\left(P_{4}, K_{n}\right)=3(n-1)+1$.
(a) With $s=3(n-1)$, find a blue/red coloring of the edges of K_{s} that avoids a blue copy of P_{4} and a red copy of K_{n}.
(b) Prove that if G is a graph in which every vertex has degree at least 3 , then G contains P_{4} as a subgraph.
(c) With $s=3(n-1)+1$, prove that every blue/red coloring of the edges of K_{s} contains a blue copy of P_{4} or a red copy of K_{n}. (Hint: if every vertex in G has at least 3 blue neighbors, then apply part (b) to the blue subgraph. Otherwise, G has a vertex u with blue degree at most 2. How large is the red neighborhood of u ?)

Comment: the argument above can be generalizes to longer paths (and even to other graphs called trees). Do you see how it generalizes to give $r\left(P_{5}, K_{n}\right)$?

