Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [2.1. $\{25,26\}]$ Recall that the slope of the line segment joining the pair of points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is $\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
(a) Prove that if S as a set of 17 points in the plane, no two of which are on a common vertical or horizontal line, then there exist $p_{1}, \ldots, p_{5} \in S$ such that the slope of the line segments joining p_{i} and p_{j} for $1 \leq i<j \leq 5$ all have the same sign.
(b) Give an example that shows that the conclusion of part (a) does not always hold if we assume only that $|S| \geq 16$.
2. [2.2.3] Note: This question is moved to HW5. What is the maximum number of edges in an n-vertex bipartite graph? Prove your answer is correct.
3. [2.2.6] Note: This question is moved to HW5. Each of 9 users sends three friend requests on a social media platform. Is it possible that each person p receives exactly 3 friend requests from the same three people to whom p sent the requests? What if the number of users is 8 instead?
