Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. For $b \geq 0$, let b_{n} be the number of ways to tile a $3 \times n$ grid with 1×3 rectangular tiles. Note that $b_{0}=1$, since placing zero tiles counts as a tiling of the 3×0 grid.
(a) Find a recurrence relation for b_{n}. (Your recurrence should include all needed base cases.)
(b) Recall that the number of ways a_{n} of tiling a $2 \times n$ grid with dominos is given by the recurrence $a_{0}=a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$. How does b_{n} compare with a_{n}, the number of ways to tile a $2 \times n$ grid with dominos? Explain. Can you prove your claim?
2. [SS 1.3. $\{8,9\}$] You work at a car dealership that sells three models: A pickup trick, an SUV, and a compact hybrid. Your job is to park the vehicles in a row. The pickup trucks and the SUVs take up two spaces while the hybrid takes up one space. Let n be a nonnegative integer and let $f(n)$ be the number of ways of arranging vehicles in exactly n spaces.
(a) Find a recurrence relation for $f(n)$ and use it to compute $f(0)$ through $f(10)$.
(b) Find a first-order recurrence relation g that appears to match f (i.e. $g(n)$ should depends only on $g(n-1))$.
(c) Prove that $g(n)=f(n)$ by induction.
(d) Use the values for $f(0)$ and $f(1)$ to find a candidate formula for $f(n)$ of the form $f(n)=a 2^{n}+b(-1)^{n}$. Prove that your formula is correct.
3. [2.1.6] You have a 3×3-square, and you throw 10 darts at it. Show that no matter where the darts land, there are two darts whose distance is at most $\sqrt{2}$.
4. [2.1.22] I have 51 rectangular pieces of cardboard, each of which has an integer length and width in the set $\{1, \ldots, 100\}$. (Note that squares are allowed.) Prove that there are two rectangles such that one can fully cover the other when placed on top.
