Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [9.1.22] Let $A(x)=\frac{1}{1+x+x^{2}}$, where $A(x)$ is the OGF for the sequence $\left(a_{n}\right)_{n \geq 0}$.
(a) Find a recurrence relation for a_{n}. Hint: try to undo the steps one would take to find the generating function from a recurrence.
(b) Find a_{0}, \ldots, a_{5}.
(c) Let α and β be the roots of $x^{2}+x+1$. Even though α and β are complex numbers, find constants C and D such that $A(x)=\frac{1}{(x-\alpha)(x-\beta)}=\frac{C}{x-\alpha}+\frac{D}{x-\beta}$.
(d) Find a closed formula for a_{n}.
2. [9.2.8] Let n be a non-negative integer. You have an unlimited supply of oranges, apples, bananas, and pears, and you are going to make bags consisting of n of these fruits. However, you insist that the numbers of apples and oranges must be odd. Let a_{n} be the number of possible such bags.
(a) What is the ordinary generating function for the sequence $\left(a_{n}\right)_{n \geq 0}$?
(b) Find a partial fraction decomposition for this generating function.
(c) Find a formula for a_{n}.
(d) What is a_{13} ?
3. [10.7.4] Let G be a graph. Prove that $\chi(G) \leq 2$ if and only if G is bipartite.
4. [10.7.5] Let G be an n-vertex graph. Prove that $\alpha(G) \cdot \chi(G) \geq n$.
5. Chromatic number and odd cycles.
(a) Let G be a graph such that $\chi(G) \geq 9$. Prove that G has three vertex-disjoint odd cycles.
(b) Find an example of a graph G with $\chi(G)=8$ such that G does not contain three vertex-disjoint odd cycles.
