Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Recall that Pascal's identity for binomial coefficients is $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ and tells the story that all k-element subsets of a set of size n either include or omit the last element.
Suppose a, b, c are non-negative integers summing to n. What equation tells the story that in a partition of $[n]$ into 3 labeled parts of sizes a, b, and c, the last element n belongs to exactly one of the parts? Explain.
2. Give a combinatorial proof of the identity $\sum_{t=k}^{n}\binom{t}{k}=\binom{n+1}{k+1}$. (Hint: let A be the set of all $(k+1)$-element subsets of $[n+1]$. Group the sets in A by their maximum element. Look at, for example, $n=5$ and $k=2$ for insight into the general case.)
3. [5.1.22] We have a group of math majors consisting of n sophomores and n juniors. We want to form a smaller group that has a total of n students in it, but from among that group we want to designate one of the students to serve as a departmental liaison. The liaison needs to be a junior, but there is no other restriction on the students chosen for the smaller group.
(a) In how many different ways can we form the smaller group with a junior liaison?
(b) Let k be a positive integer. In how many ways can we pick k juniors, a liaison from among the k juniors, and $n-k$ sophomores?
(c) Use parts (a) and (b) to give a simple expression for $\sum_{k=0}^{n} k\binom{n}{k}^{2}$.
4. [5.1.16] Using algebra, find and prove an identity of the form $\sum_{k=0}^{n} \frac{(2 n)!}{k!^{2}(n-k)!^{2}}=\binom{?}{n}^{2}$. (Hint: in the terms on the LHS, multiply the numerator and denominator by $n!^{2}$.)
5. [5.1.30] Recall that $k!\geq\left(\frac{k}{e}\right)^{k}$. Use this to prove that for $1 \leq k \leq n$, we have $\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq$ $\left(\frac{n e}{k}\right)^{k}$.
6. [5.2.4] Find a simple expression for $\sum_{k=0}^{n}(2 k+1)\binom{n}{k}$.
