Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Prove that for every nonnegative integer n, we have $\sum_{k=1}^{n} k^{2}=[(2 n+1)(n+1) n] / 6$.
2. Recall that $n!=1 \cdot 2 \cdots \cdots n$. For $n \geq 0$, find a formula for $1+\sum_{k=1}^{n} k \cdot k$! and prove your formula is correct.
3. The adjusted Fibonacci sequence \hat{F}_{n} is given by $\hat{F}_{0}=\hat{F}_{1}=1$ and $\hat{F}_{n}=\hat{F}_{n-1}+\hat{F}_{n-2}$ for $n \geq 2$. (Note that $\hat{F}_{2}=\hat{F}_{1}+\hat{F}_{0}=1+1=2$, and $\hat{F}_{3}=\hat{F}_{2}+\hat{F}_{1}=2+1=3$.) Prove that for $n \geq 0$, we have $\hat{F}_{n} \leq \phi^{n}$, where $\phi=(1+\sqrt{5}) / 2$.
4. A unit fraction is a rational number of the form $1 / n$ for some positive integer n. An Egyptian fraction is the sum of zero or more distinct unit fractions. For example, $\frac{29}{45}$ is an Egyptian fraction since $\frac{29}{45}=\frac{1}{4}+\frac{1}{5}+\frac{1}{9}+\frac{1}{12}$. Although $\frac{11}{12}=\frac{1}{3}+\frac{1}{3}+\frac{1}{4}$, this is not enough to establish that $\frac{11}{12}$ is an Egyptian fraction since the unit sums are not distinct. However, $\frac{11}{12}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}$ does establish that $\frac{11}{12}$ is an Egyptian fraction.
(a) Let a and b be nonnegative integers with $0<a<b$, and let n be the smallest positive integer such that $\frac{1}{n} \leq \frac{a}{b}$. Prove that $\frac{a}{b}-\frac{1}{n}=\frac{c}{d}$ for some nonnegative integers c and d such that $c<a$ and $\frac{c}{d}<\frac{1}{n}$.
(b) Prove that if a and b are nonnegative integers with $a<b$, then $\frac{a}{b}$ is an Egyptian fraction.

Comment: with part (b) and the fact that the Harmonic series $1+\frac{1}{2}+\frac{1}{3}+\cdots$ diverges, one can show that every nonnegative rational number is an Egyptian fraction.

