Name: _

Directions: Show all work. No credit for answers without work.

1. **[10 points]** Find a primitive root modulo 7. Show work that verifies your selection is a primitive root.

2. [5 points] Let m and n be large integers. Suppose that $2^{m-1} \equiv 1 \pmod{m}$ and $2^{n-1} \equiv 4 \pmod{n}$. What, if anything, can you conclude about whether m and/or n is prime, and why?

- 3. [3 parts, 4 points each] Short Answer (no need to show work on this problem). Let p be an odd prime and let g be a primitive root in \mathbb{F}_p .
 - (a) How many primitive roots are there in \mathbb{F}_p ?
 - (b) What is the order of g in \mathbb{F}_p ?
 - (c) What is the order of g^2 in \mathbb{F}_p ?

- 4. Alice and Bob use the multiplication symmetric cipher with prime p = 421 and $\mathcal{K} = \mathcal{M} = \mathcal{C} = \mathbb{F}_p^*$. Recall that the encryption function is given by $e_k(m) = km$. They choose the key k = 182.
 - (a) [5 points] Alice wishes to send the message m = 282 to Bob. What is the corresponding cipher text?
 - (b) [10 points] Alice receives the ciphertext c = 296 in response. What is the corresponding plaintext message?

- (c) [5 points] How many plaintext/ciphertext pairs does Eve need to compute the shared key? Explain.
- 5. [5 points] Alice and Bob switch to the Exclusive-OR cipher with key k = 01100101. Alice receives the ciphertext c = 00101110. What is the corresponding plaintext?

- 6. [2 parts, 12 points each] Alice and Bob use the ElGamal cipher, with p = 59 and g = 11.
 - (a) Alice picks a = 17 as her private key and in \mathbb{F}_p computes $A = g^a = (11)^{17} = 14$ as her public key. Bob wishes to send to Alice the message m = 40 and picks the random element 8. What does Bob send to Alice?

(b) Bob sends a second encrypted message to Alice with ciphertext $(c_1, c_2) = (39, 5)$. Help Alice decrypt Bob's message.

- 7. Let p = 179 and let g = 3. We use Shanks's baby-step/giant-step algorithm to compute $\log_q(4)$ in \mathbb{F}_p . Note that g has order 89 in \mathbb{F}_p , and we may take $n = 1 + \lfloor \sqrt{89} \rfloor = 10$.
 - (a) [8 points] Compute List 1 (the baby-steps).

(b) [12 points] Compute List 2 (the giant-steps).

(c) [4 **points**] If it exists, find $\log_g(4)$.