Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [10 points] Find a primitive root modulo 7 . Show work that verifies your selection is a primitive root.

$a n$								
2	1	2	4	1				
3	1	3	2	6	4	5	1	$3 x$
	$6 \times$							

Since 3 has order 6,
[3) is a primitive root.
(The sher primitive not is 5.)
2. [5 points] Let m and n be large integers. Suppose that $2^{m-1} \equiv 1(\bmod m)$ and $2^{n-1} \equiv 4$ $(\bmod n)$. What, if anything, can you conclude about whether m and/or n is prime, and why? By Fermat's Little Theorem, if p is prime and $p>2$, the $2^{p-1} \equiv 1$ (mad p).
Since $2^{n-1} \equiv 4(\bmod n)$ at $4 \not \equiv 1(\bmod n)$ when n is large,
we conclude that n is not prime.
Although $2^{m-1} \equiv 1($ mod $m)$ is consistent with m being pine, we reach no conclusion about whether m is prime or not.
3. [3 parts, 4 points each] Short Answer (no need to show work on this problem). Let p be an odd prime and let g be a primitive root in \mathbb{F}_{p}.
(a) How many primitive roots are there in \mathbb{F}_{p} ?

$$
\phi(p-1)
$$

(b) What is the order of g in \mathbb{F}_{p} ?

Since g is a primitue root, g has order p-1.
(c) What is the order of g^{2} in \mathbb{F}_{p} ?

The order of g^{2} is $\frac{p-1}{2}$
4. Alice and Bob use the multiplication symmetric cipher with prime $p=421$ and $\mathcal{K}=\mathcal{M}=$ $\mathcal{C}=\mathbb{F}_{p}^{*}$. Recall that the encryption function is given by $e_{k}(m)=k m$. They choose the key $k=182$.
(a) [5 points] Alice wishes to send the message $m=282$ to Bob. What is the corresponding cipher text?

$$
e_{k}(282)=k \cdot 282=(182)(282)=51,324 \equiv 383(\bmod p)
$$

(b) [10 points] Alice receives the ciphertext $c=296$ in response. What is the corresponding plaintext message?
We have $d_{k}(c)=k^{-1} c$. So $d_{k}(296)=k^{-1} \cdot(296)=(182)^{-1} \cdot(296)$.

$$
\begin{aligned}
& \text { Use EEA to find (182) }{ }^{-1} \text { : } \quad 1=11-(5)(2) \\
& =11-(5)[57-(5)(11)] \\
& =(26)(11)-(5)(57) \\
& =(26)[182-(3)(57)]-(5)(57) \\
& =(26)(182)-(83)(57) \\
& =[26)(182)-(83)[421-(2)(182)] \\
& =(192)(182)-(83)(421) \\
& k^{-1}=(182)^{-1}=192 \\
& \text { So } \\
& d_{k}(296)=(192) \cdot(296) \\
& =56832 \\
& =418 \\
& 11=(5)(2)+1
\end{aligned}
$$

6. [2 parts, 12 points each] Alice and Bob use the ElGamal cipher, with $p=59$ and $g=11$.
(a) Alice picks $a=17$ as her private key and in \mathbb{F}_{p} computes $A=g^{a}=(11)^{17}=14$ as her public key. Bob wishes to send to Alice the message $m=40$ and picks the random element 8. What does Bob send to Alice?

$$
\begin{array}{l|l}
\text { c. } \quad c_{1}=9^{8}=(11)^{8} & \begin{array}{l}
c_{2}: c_{2}=m \cdot A^{8}=40 \cdot 49 \\
(11)^{2}=121=3
\end{array} \\
(11)^{4}=3^{2}=9 \\
(11)^{8}=9^{2}=22 . & \begin{array}{l}
\text { Need } A^{8}: \\
A^{2}=(14)^{2}=19
\end{array} \\
\text { So } c_{1}=(11)^{8}=22 . & A^{4}=(19)^{2}=7 \\
A^{8}=7^{2}=49 .
\end{array}
$$

Bob sends $\left(c_{1}, c_{2}\right)=(22,13)$ to Alice.
(b) Bob sends a second encrypted message to Alice with ciphertext $\left(c_{1}, c_{2}\right)=(39,5)$. Help Alice decrypt Bob's message.
We have $c_{1}=g^{b}$ and $c_{2}=m \cdot g^{a b}$.
Alice needs $g^{a b}=\left(g^{b}\right)^{a}=c_{1}^{a}=(39)^{17}$.

$$
\begin{aligned}
39^{2} & =46 \\
(39)^{4} & =(46)^{2}=51 \\
(39)^{8} & =(51)^{2}=5 \\
(39)^{16} & =5^{2}=25 \\
(39)^{17} & =(39)^{16} \cdot(39)=25.39 \\
& =31 .
\end{aligned}
$$

$$
m=(-19) \cdot 5=-95=-95+2(59)
$$

$$
\begin{aligned}
5 & =m \cdot 31 \\
(-19) \cdot 5 & =m \cdot(31)(-19)
\end{aligned}
$$

So $g^{a b}=31$. We need $(31)^{-1}$:

$$
\begin{array}{l|l}
59=(1)(31)+28 & 1 \\
31=(1)(28)+3 \\
28=(9)(3)+1 & =28-(9)(31-(1)(28)) \\
& =(10)(28)-(9)(31) \\
& =(10)[59-(1)(31)]-(9)(31) \\
& =(10)(59)-(19)(31)
\end{array}
$$

$$
\text { So }(31)^{-1}=-19
$$

$$
=-95+118=23
$$

7. Let $p=179$ and let $g=3$. We use Shanks's baby-step/giant-step algorithm to compute $\log _{g}(4)$ in \mathbb{F}_{p}. Note that g has order 89 in \mathbb{F}_{p}, and we may take $n=1+\lfloor\sqrt{89}\rfloor=10$.
(a) $[88$ points] Compute List 1 (the baby-steps).

i	0	1	2	3	4	5	6	7	8	9
g^{i}	1	3	9	27	81	64	13	39	117	172

(b) [12 points] Compute List 2 (the giant-steps).

Need $\left(g^{-1}\right)^{n}=(60)^{10}$

$$
\begin{aligned}
& (60)^{2}=20 \\
& (60)^{4}=(20)^{2}=42 \\
& (60)^{8}=(42)^{2}=153
\end{aligned}
$$

$$
\begin{aligned}
g^{-n}=(60)^{10} & =(60)^{8} \cdot(60)^{2} \\
& =153 \cdot 20 \\
& =17
\end{aligned}
$$

giant "stride""

Need $g^{-1}=(3)^{-1}$.
$179=(59)(3)+2$

$$
3=(1)(2)+1
$$

$$
1=3-(1)(2)
$$

$$
=3-(1)[179-59)(3)]
$$

$$
=(60)(3)-(1)(179)
$$

$$
\text { So } g^{-1}=60
$$

(c) $[4$ points $]$ If it exists, find $\log _{g}(4)$.
we have $g^{\prime}=3=h \cdot g^{-6 \cdot n}$
so $\quad g^{6 n+1}=h=4$
so $\log _{9}(4)=6 n+1=6 \cdot 10+1=61$

