Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [10 points] Find a primitive root modulo 7. Show work that verifies your selection is a primitive root.

	0 100	•						
1/2	101	1	2	3	4	5	6	order
2	1	2	4 2	r⊕	4	5	0	3 × 6 ✓

Since 3 has order 6,

[3] is a primitive root.

(The other primitive root is 5.)

2. [5 points] Let m and n be large integers. Suppose that $2^{m-1} \equiv 1 \pmod{m}$ and $2^{n-1} \equiv 4 \pmod{n}$. What, if anything, can you conclude about whether m and/or n is prime, and why?

By Fernat's Little Theorem, if p is prime and p>2, then $2^{p-1}\equiv 1$ (mod p). Since $2^{n-1}\equiv 4\pmod n$ and $4\not\equiv 1\pmod n$ when n is large, we conclude that n is not prime.

Although $2^{m-1} \equiv | (mod m)$ is consistent with m being prime, we reach no conclusion about whether m is prime or not.]

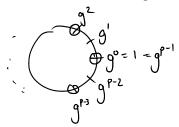
- 3. [3 parts, 4 points each] Short Answer (no need to show work on this problem). Let p be an odd prime and let g be a primitive root in \mathbb{F}_p .
 - (a) How many primitive roots are there in \mathbb{F}_p ?

Ø(p-1)

(b) What is the order of g in \mathbb{F}_p ?

Since g is a primitive voit, g has order [P-1].

(c) What is the order of g^2 in \mathbb{F}_p ?



The order of
$$g^2$$
 is $\frac{P^{-1}}{2}$

- 4. Alice and Bob use the multiplication symmetric cipher with prime p=421 and $\mathcal{K}=\mathcal{M}=\mathcal{C}=\mathbb{F}_p^*$. Recall that the encryption function is given by $e_k(m)=km$. They choose the key k=182.
 - (a) [5 points] Alice wishes to send the message m=282 to Bob. What is the corresponding cipher text?

$$e_{k}(282) = k \cdot 282 = (182)(282) = 51,324 = [383] \pmod{p}$$

(b) [10 points] Alice receives the ciphertext c=296 in response. What is the corresponding plaintext message?

We have
$$d_{k}(c) = k^{-1}c$$
. So $d_{k}(296) = k^{-1} \cdot (296) = (182)^{-1} \cdot (296)$.

Use EEA to find (182)⁻¹:

$$421 = (2)(182) + 57$$

$$182 = (3)(57) + 11$$

$$57 = (5)(11) + 2$$

$$11 = (5)(2) + 1$$

$$1 = (26)(182 - (3)(57))$$

$$1 = (26)(182) - (83)(57)$$

$$1 = (26)(182) - (83)(57)$$

$$1 = (26)(182) - (83)(421)$$

$$1 = (192)(182) - (83)(421)$$

$$1 = (192)(182) - (83)(421)$$

(c) [5 points] How many plaintext/ciphertext pairs does Eve need to compute the shared key? Explain.

[Just 1.] Given
$$(M_1, C_1)$$
 with $C_1 = k M_1$, Eve finds k by camputing both sides by M_1^{-1} to get $k = C_1 M_1^{-1}$.

5. [5 points] Alice and Bob switch to the Exclusive-OR cipher with key k = 01100101. Alice receives the ciphertext c = 00101110. What is the corresponding plaintext?

$$\Theta$$
 00101110 C $G_{k}(m) = m\Theta_{k}$ $G_{k}(c) = C \oplus k$

(a) Alice picks a=17 as her private key and in \mathbb{F}_p computes $A=g^a=(11)^{17}=14$ as her public key. Bob wishes to send to Alice the message m=40 and picks the random element 8. What does Bob send to Alice?

= 31

Math373

(b) Bob sends a second encrypted message to Alice with ciphertext $(c_1, c_2) = (39, 5)$. Help Alice decrypt Bob's message.

We have
$$c_1 = g^b$$
 and $c_2 = m \cdot g^{ab}$.

Alia needs $g^{ab} = (g^b)^a = c_1^a = (39)^{17}$.

 $39^2 = 46$
 $(39)^4 = (46)^2 = 51$
 $(39)^8 = (51)^2 = 5$
 $(39)^{16} = 5^2 = 25$
 $(39)^{17} = (39)^{15} \cdot (39) = 25.39$
 $= 31$.

 $c_1^a = (39)^{17} = (39)^{15} \cdot (39) = 25.39$
 $c_2^a = (39)^{17} = (39)^{15} \cdot (39) = 25.39$
 $c_3^a = (39)^{17} = (39)^{15} \cdot (39) = 25.39$
 $c_4^a = (39)^{17} = (39)^{15} \cdot (39) = 25.39$
 $c_4^a = (39)^{17} = (39)^{15} \cdot (39) = 25.39$
 $c_4^a = (39)^{17} = (39)^{17} \cdot (39)^{17} = (39)$

$$5 = m \cdot 31$$
 $m = (-19) \cdot 5 = -95 = -95 + 2(59)$ $= -95 + 118 = 23$

= 3 - (1)[179-69)(3)]

= (60)(3) - (1)(179)

- 7. Let p = 179 and let g = 3. We use Shanks's baby-step/giant-step algorithm to compute $\log_q(4)$ in \mathbb{F}_p . Note that g has order 89 in \mathbb{F}_p , and we may take $n=1+\lfloor\sqrt{89}\rfloor=10$.
 - (a) [**% points**] Compute List 1 (the baby-steps).

ī	0	1	2	3	4	5	6	7	8	٩
i g ⁱ	1	3	9	27	81	64	13	39	117	172

(b) [12 points] Compute List 2 (the giant-steps).

(c) [4 points] If it exists, find $\log_g(4)$.

We have
$$g' = 3 = h \cdot g^{-6 \cdot 7}$$

so $g^{6n+1} = h = 4$
so $logg(4) = 6n+1 = 6.10+1 = 61$