Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [5 points] Solve the following system of congruences; your solution should identify the set of all possible solutions.

$$
x \equiv 23 \quad(\bmod 31) \quad 2 x \equiv 43 \quad(\bmod 53) \quad x \equiv 6 \quad(\bmod 25)
$$

2. [4 points] Convert the following system of coungruences to an equivalent system of congruences with prime power moduli. (Do not solve.)

$$
x \equiv 58 \quad(\bmod 98) \quad x \equiv 16 \quad(\bmod 21) \quad x \equiv 16 \quad(\bmod 36)
$$

3. [1 point] Without using CRT, show that if $x=9 r+5$ and $x=7 s+3$ for $r, s \in \mathbb{Z}$, then $x=63 n+59$ for some $n \in \mathbb{Z}$.
