Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [5 points] Solve the following system of congruences; your solution should identify the set of

all possible solutions. $2x \equiv 43 \pmod{53} \qquad \qquad x \equiv 6 \pmod{25}$ $x \equiv 23 \pmod{31}$ $(27)(2)_{\times} = (27)(43)$ $\chi = 23 \pmod{31}$ $\chi = 48 \pmod{53}$ $\chi = 6 \pmod{25}$ Moduli are pairwise relatively prine => CRT applies directly. Let M=31.53.25=41,075

i (mi	M/mi	Mí (mod mi)	(M/mi) [mod w)	target
	31	1325	23	-4	23
2	53	775	33	-8	48
3	25	1643	18	7	6
	11	A	1	a	9

2. [4 points] Convert the following system of coungruences to an equivalent system of congruences with prime power moduli. (Do not solve.)

$$x \equiv 58 \pmod{98}$$
 $x \equiv 16 \pmod{21}$
 $x \equiv 16 \pmod{21}$
 $x \equiv 7$
 $x \equiv 7$

$$x \equiv 16 \pmod{36}$$

$$2^{2} \cdot 3^{2}$$

$$\times \equiv 16 \pmod{4}$$

$$\times \equiv 0 \pmod{4}$$

$$\times \equiv 0 \pmod{4}$$

$$\times \equiv 16 \pmod{9}$$

$$\times \equiv 7 \pmod{9}$$

$$\frac{p=2}{x=8 \pmod{2}} \qquad \frac{p=3}{x=1 \pmod{3}} \qquad \frac{p=7}{x=9 \pmod{49}}$$

$$(mp) = 1 \qquad (mod) \qquad (mod)$$

3. [1 point] Without using CRT, show that if x = 9r + 5 and x = 7s + 3 for $r, s \in \mathbb{Z}$, then x = 63n + 59 for some $n \in \mathbb{Z}$.

We have x = 9r + 5 and x = 7s + 3. Multiplying by 7 and 9 respectively gives $7x = 63r + 35 \qquad (Eg1)$ $9x = 63s + 27 \qquad (Eg2)$

Next we use that gcd(7,9)=1, so that 7u+9v=1 for some $uv_1 \in \mathbb{Z}$. We find u_1v with EEA:

$$9 = (1)(7) + 2$$
 | $1 = 7 - (3)(2)$
 $7 = (3)(2) + 1$ | $= 7 - (3)(9 - (1)(7))$
 $= (-3)(9) + (4)(7)$

Mut. (Eg1) by 4 and (Eg2) by 3 and add to get:

$$\frac{(4.7)\times = 63\cdot(4r) + 140}{(-3.9)\times = 63\cdot(-3s) - 81}$$

$$\times = 63(4r - 3s) + 59.$$

So $\chi = 63 n + 59$ where n is the integer 4r - 3s.