Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [2 parts, 3 points each] Orders in \mathbb{Z}_{13} .

(a) Find the order of 2 in \mathbb{Z}_{13} . Is 2 a primitive root?

n	0	1	2	3	4 \	5	6	7	8	9	ID	11	12
2 ⁿ	١	2	4	8	3	6	 12 (-1)	11 (-2)	૧ (-ય)	5 (-8)	10 (-3)	7 (-6)	(-12)

Since 12 is the smallest positive exponent on 2 giving 1, the order is [12.]
Since the order of 2 equals |Z'is or 13-1, we have that [2 is a primitive root]

(b) Find the order of 3 in \mathbb{Z}_{13} . Is 3 a primitive root?

Since 3 is the smallest positive exponent on 3 giving 1, the order is $\boxed{37}$.

Since the order of 3 is less than $\boxed{\mathbb{Z}_{13}^+}$, we have that $\boxed{3}$ is not a primitive root.

2. [4 points] Use Fermat's Little Theorem to compute the inverse of 17 in \mathbb{F}_{37} ..

By FLT, $1 = (17)^{37-1} = (17)^{36} = (17)(17)^{35} \pmod{37}$. So the niverse of 17 is $(17)^{35}$.

$$(17)^2 = 289 = 289 - 185 = 164 = 104 - 111 = -7$$
 (= 30)

$$(17)^4 = (17)^2 \cdot (17)^2 = (-7)(-7) = 49 = 12$$

$$(17)^{8} = (17)^{4} \cdot (17)^{4} = (12)^{2} = 144 = 144 - 111 = 33 = -4 = (533)$$

$$(17)^{16} \equiv (17)^8 \cdot (17)^8 \equiv (-4)^2 \equiv 16$$

$$(17)^{32} = (17)^{16} \cdot (17)^{16} = (16)^2 = 256 = 256 - 185 = 71 = 71 - 74 = -3 \quad (=34)$$

$$(17)^{35} = (17)^{32} \cdot (17)^2 \cdot 17 = (-3) \cdot (-7) \cdot (17) = 21 \cdot 17 = 210 + 147 = 357$$

= 357 - 370 = -13 = 24.