Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [2 parts, 3 points each] Orders in $\mathbb{Z}_{13}$.
(a) Find the order of 2 in $\mathbb{Z}_{13}$. Is 2 a primitive root?

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{n}$ | 1 | 2 | 4 | 8 | 3 | 6 | 12 | 11 | 9 | 5 | 10 | 7 | 1 |
| $(-1)$ | $(-2)$ | $(-4)$ | $(-8)$ | $(-3)$ | $(-6)$ | $(-12)$ |  |  |  |  |  |  |  |

Since 12 is the smallest positive exparent on 2 giving 1 , the order is 12.1 Since the order of 2 equals $\left|\mathbb{Z}_{13}^{*}\right|$ or $13-1$, we have that 2 is a primitive root (b) Find the order of 3 in $\mathbb{Z}_{13}$. Is 3 a primitive root?

| $n$ | 0 | 1 | 2 | 3 | $\ldots$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $3^{n}$ | 1 | 3 | 9 | 1 |  |

Since 3 is the sumalleat positive exponent on 3 giving 1, the order is 3 .
Since the order of 3 is less than $\left|\mathbb{Z}_{13}^{*}\right|$, we have that 3 is not a primitive rat.
2. [4 points] Use Fermat's Little Theorem to compute the inverse of 17 in $\mathbb{F}_{37}$..

By FLT, $1 \equiv(17)^{37-1} \equiv(17)^{36} \equiv(17)(17)^{35}(\bmod 37)$. So the inverse 117 is $(17)^{35}$.

$$
\begin{aligned}
&(17)^{2} \equiv 289 \equiv 289-185 \equiv 104 \equiv 104-111 \equiv-7 \quad(\equiv 30) \\
&(17)^{4} \equiv(17)^{2} \cdot(17)^{2} \equiv(-7)(-7) \equiv 49 \equiv 12 \\
&(17)^{8} \equiv(17)^{4} \cdot(17)^{4} \equiv(12)^{2} \equiv 144 \equiv 144-111 \equiv 33 \equiv-4 \quad(\equiv 33) \\
&(17)^{16} \equiv(17)^{8} \cdot(17)^{8} \equiv(-4)^{2} \equiv 16 \\
&(17)^{32} \equiv(17)^{16} \cdot(17)^{16} \equiv(16)^{2} \equiv 256 \equiv 256-185 \equiv 71 \equiv 71-74 \equiv-3 \quad(\equiv 34) \\
& 35=32+2+1 \\
&(17)^{35}=(17)^{32} \cdot(17)^{2} \cdot 17=(-3) \cdot(-7) \cdot(17)=21 \cdot 17=210+147=357 \\
&=357-370=-13=24
\end{aligned}
$$

Check: $\quad 24.17=240+168=408=408-370=38=1$

