Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [3 points] Give the addition and multiplication tables for \mathbb{Z}_{5}.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

x	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

2. [2 parts, 2 points each] Compute the following. Your answer should be an integer in the set $\{0,1, \ldots, m-1\}$, where m is the modulus in the given problem.

$$
\begin{aligned}
& \text { (a) } 297+561(\bmod 48) \\
& 297=(6)(48)+9, \quad 297 \equiv 9(\bmod 48) \\
& 561=(11)(48)+33,561 \equiv 33(\bmod 48) \\
& 297+561 \equiv 9+33 \quad(\bmod 48) \\
& \equiv 42 \\
& \text { (b) } 136 \cdot(-524)(\bmod 87) \\
& 136=(1)(87)+49 \quad 136 \equiv 49 \text { (had 87) } \\
& -524=(-6)(87)-2 \quad-524 \equiv-2(\bmod 87) \\
& 136 \cdot(-524) \equiv(49) \cdot(-2)(\bmod 87) \\
& =-98 \\
& \equiv-11 \\
& \equiv 76 \\
& \text { 3. Let } a, b, c, m \in \mathbb{Z} \text { with } m \geq 1 \text {. } \mathrm{X}
\end{aligned}
$$

(a) $[\mathbf{1}$ point $]$ According to the definition, what does $a \equiv b(\bmod m)$ mean?

It means $m \mid b-a$ or $b-a=k m$ for sane $k \in \mathbb{Z}$.
(b) $[2$ points $]$ Prove that if $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.

Since $a \equiv b(\bmod m)$ an $b \equiv c(\bmod m)$, we know that

$$
b-a=k_{1} m \text { and } c-b=k_{2} m \text { for sone } k_{1}, k_{2} \in \mathbb{Z}
$$

Adding these gives $(c-b)+(b-a)=k_{2} m+k_{1} m$, or $c-a=\left(k_{2}+k_{1}\right) m$. Since $m \mid c-a$, it follows that $a \equiv c(\bmod m)$.

