Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [3 points] Give the addition and multiplication tables for \mathbb{Z}_5 .

+]	0	ı	2	3	4
	0	1	2	3	4
-	1	2	3	4	0
2	2	3	4	0	1
3	3	4	O	1	2
4	1 4	0	1	_ 2	3

X	0	11	2	3	4_
0	0	0	0	0	0
$\overline{1}$	0	l	2	3	4
2	0	2	4	١	3
3	0	3	1	4	2
4.	0	4	3	2	1

2. [2 parts, 2 points each] Compute the following. Your answer should be an integer in the set $\{0, 1, \ldots, m-1\}$, where m is the modulus in the given problem.

(a)
$$297 + 561 \pmod{48}$$

$$297 = (6)(48) + 9$$
, $297 = 9$ (mod 48)
 $561 = (11)(48) + 33$, $561 = 33$ (mod 48)

$$297+561 = 9+33 \pmod{48}$$

= 42

(b)
$$136 \cdot (-524) \pmod{87}$$

- 3. Let $a, b, c, m \in \mathbb{Z}$ with $m \ge 1$. X
 - (a) [1 point] According to the definition, what does $a \equiv b \pmod{m}$ mean?

(b) [2 points] Prove that if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Since $a = b \pmod{m}$ and $b = c \pmod{m}$, we know that $b-a = k_1 m$ and $c-b = k_2 m$ for some $k_1, k_2 \in \mathbb{Z}$.

Adding these gives $(c-b)+(b-a)=k_2 m+k_1 m$, or $c-a=(k_2+k_1)m$.

Since $m \mid c-a$, if follows that $a = c \pmod{m}$.