Name: Solutions
Directions: Show all work. No credit for answers without work.

1. Let $p=41$. Alice and Bob use Elliptic Curve Diffie-Hellman to exchange a secret. They agree to use $E: y^{2}=x^{3}+19 x+20$ over \mathbb{F}_{p} with base point $g=(2,5)$. The following powers of g are given for convenience.

n	1	2	4	8	16	32
g^{n}	$(2,5)$	$(38,31)$	$(24,27)$	$(36,13)$	$(9,31)$	$(22,4)$

(a) $[\mathbf{1}$ point $]$ Find the base point inverse g^{-1}.

$$
g^{-1}=(2,-5) \quad \text { since } \quad(2,5)(2,-5)=\theta
$$

(b) [3 points] Alice chooses private exponent $a=17$. What should she send to Bob?

She sends $A=g^{a}=g^{16+1}=g^{16} \cdot g^{\prime}=\underbrace{(9,31)}_{P_{2}} \cdot \underbrace{(2,5)}_{P_{1}}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{31-5}{9-2}=\frac{26}{7}=26 \cdot 7^{-1}=26 \cdot 6=33
$$

- Need $7^{-1} \bmod 41.7 \cdot 6=42$, so $7^{-1}=6$.

$$
\begin{aligned}
& x_{3}=\lambda^{2}-x_{1}-x_{2}=(33)^{2}-2-9=23-11=12 \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}=33(2-12)-5=-335=34 . \quad \text { So } A=(12,34)
\end{aligned}
$$

(c) [2 points] Bob chooses private exponent $b=2$. What is their shared secret?

We need $g^{a b}=\left(g^{a}\right)^{b}=A^{b}=(12,34) \cdot(12,34) \quad \begin{aligned} & y^{2}=x^{3}+A x+B \\ & 2 y y^{\prime}=3 x^{2}+A, \quad A=y^{\prime}=\frac{3 x^{2}+A}{2 y}\end{aligned}$

$$
\begin{aligned}
& \lambda=\frac{3 x_{1}^{2}+A}{2 y_{1}}=\frac{3(12)^{2}+19}{2(34)}=\frac{451}{68}=\frac{0}{68}=0 \\
& x_{3}=\lambda^{2}-x_{1}-x_{2}=0-12-12=-24=17 \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}=0(\sim)-34=-34=7
\end{aligned}
$$

So shared severe is $A^{b}=(17 ; 7)$.
2. [4 points] Let $p=31$, and let $\mathbf{a}=x^{5}-4 x^{2}+1$ and $\mathbf{b}=x^{2}+1$ be polynomials in $\mathbb{F}_{p}[x]$. Find \mathbf{q} and \mathbf{r} such that $\mathbf{a}=\mathbf{q} \mathbf{b}+\mathbf{r}$ with $\mathbf{r}=0$ or $\operatorname{deg}(\mathbf{r})<\operatorname{deg}(\mathbf{b})$. In your final answer, normalize all coefficients to values in the set $\{0, \ldots, p-1\}$.

$$
\begin{array}{r}
x^{2}+1 \begin{array}{c}
x^{3}-x-4 \\
\frac{x^{5}+0 x^{4}+0 x^{3}-4 x^{2}+0 x+1}{-x^{3}-4 x^{2}}+0 x+1
\end{array}
\end{array}
$$

Take $q=x^{3}-x-4=x^{3}+30 x+27$ [nomadize coefficients]

$$
r=x+5
$$

