Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. [JJJ 2.8] Alice and Bob agree to use the prime p = 1373 and the base g = 2 for communications using the ElGamal public key cryptosystem.
 - (a) Alice chooses a = 947 as her private key. What is the value of her public key?
 - (b) Bob chooses b = 716 as his private key, so his public key is $B = 2^{716} = 469$. Alice encrypts the message m = 583 using the ephemeral key k = 887. What is the ciphertext (c_1, c_2) that Alice sends to Bob?
 - (c) Alice decides to choose a new private key a = 299 with associated public key $A = 2^{299} = 34$. Bob encrypts a message using Alice's public key and sends her the ciphertext (661, 1325). Decrypt the message.
 - (d) Now Bob chooses a new private key and publishes the associated public key B = 893. Alice encrypts a message using this public key and sends the ciphertext (693, 793) to Bob. Eve intercepts the transmission. Help Eve by solving the discrete logarithm problem $2^b \equiv 893 \pmod{1373}$ and use the value of b to decrypt the message.
- 2. [JJJ 2.16] Decide whether each of the following are true or false.
 - (a) $x^2 + \sqrt{x} \in O(x^2)$. (d) $e^k \in O(2^k)$.
 - (b) $k^{300} \in O(2^k)$. (e) $k^r \in O(e^{\sqrt{k}})$ for all positive r.
 - (c) $2^k \in O(e^k)$. (f) $e^{\sqrt{k}} \in O(e^{rk})$ for all positive r.
- 3. Let *m* be a positive integer and let $g \in \mathbb{Z}_m^*$.
 - (a) Let h be the order of g in \mathbb{Z}_m^* . Prove that if $g^n \equiv 1 \pmod{m}$, then $h \mid n$.
 - (b) Let n be a positive integer. Prove that the order of g in \mathbb{Z}_m^* equals n if and only if $g^n \equiv 1 \pmod{m}$ and $g^{n/q} \not\equiv 1 \pmod{m}$ for each prime q that divides n.
- 4. Shanks's Algorithm By Hand. Let p = 211 and let g = 8.
 - (a) Find the order N of g in \mathbb{F}_p .
 - (b) Compute List 1 in Shanks's Algorithm for computing $\log_q(h)$.
 - (c) Use Shanks's Algorithm to find each of the following discrete logarithms. In each case, explicitly give List 2.

i. $\log_q(122)$ ii. $\log_q(150)$ iii. $\log_q(200)$

- 5. Shanks's Algorithm By Computer.
 - (a) Implement Shanks's Baby-step/Giant-step algorithm shanks_discrete_log(g,h,m) that returns x such that g^x ≡ h (mod m) when such an x exists. Submit your code.
 Hint: if implementing the algorithm in python, then you may find the built-in dictionary class useful. See shanks.py for code that makes a dictionary storing the first few powers of a base g and a naive, brute-force implementation naive_discrete_log(g,h,m).
 - (b) Let p = 84298814015219. Use your code to compute $\log_2(3)$ in \mathbb{F}_p . With a good implementation, it should take no more than about a minute on modern hardware. (My laptop from about 2016 takes 6 or 7 seconds.)