Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [JJJ 1.36] Compute the value of $2^{(p-1) / 2}(\bmod p)$ for every prime $3 \leq p<20$. (You do not need to show the details of your computation.) Make a conjecture as to the possible values of $2^{(p-1) / 2}(\bmod p)$ and prove that your conjecture is correct.
2. [JJJ 1.41] Consider the affine cipher with key $k=(\alpha, \beta)$ whose encryption and decryption functions are given by

$$
\begin{aligned}
e_{k}(m) & \equiv \alpha m+\beta \quad(\bmod p) \\
d_{k}(c) & \equiv \alpha^{-1}(c-\beta) \quad(\bmod p)
\end{aligned}
$$

(a) Let $p=541$ and let $k=(34,71)$. Encrypt the message $m=204$. Decrypt the ciphertext $c=431$.
(b) Assuming that p is public knowledge, explain why the affine cipher is vulnerable to a chosen plaintext attack. How many plaintext/ciphertext pairs are likely to be needed to recover the private key?
(c) Alice and Bob decide to use the prime $p=601$ for their affine cipher. The value of p is public knowledge. Eve intercepts the ciphertexts $c_{1}=324$ and $c_{2}=381$, and she also manages to find the corresponding plaintexts are $m_{1}=387$ and $m_{2}=491$. Determine the private key (α, β) and then use it to encrypt the message $m_{3}=173$.
3. [JJJ 1.43] Let n be a large integer and let $\mathcal{K}=\mathcal{M}=\mathcal{C}=\mathbb{Z}_{n}$. For each of the functions below, answer the following questions.

- Is e an encryption function? In other words, is e an injective function?
- If e is an encryption function, what is the associated decryption function d ?
- If e is not an encryption function, can you make it into an encryption function by restricting the set of keys \mathcal{K} to a smaller, but still reasonably large subset?
(a) $e_{k}(m) \equiv k-m(\bmod n)$
(b) $e_{k}(m) \equiv k \cdot m(\bmod n)$
(c) $e_{k}(m) \equiv(k+m)^{2}(\bmod n)$

4. Fast Power Algorithm

(a) Implement the fast power algorithm fast_power (g, a, m) that computes $g^{a}(\bmod m)$. A recursive implementation will probably not work due to limited stack space provided by most programming environments, so an iterative implementation is recommended. Print out your code for hard-copy submission with this assignment.
(b) Use your code to compute $3^{a}(\bmod p)$ where

$$
\begin{aligned}
& a= 8210362893450651574131722296757356605200830169356578785813400124279769 \\
& 1494399109783730964536462425805314596635511606535459103343485526667825 \\
& 0438301548529598352882812656428385418093139636082570658299829788458938 \\
& 9083806978918503471627935113458406773943290254539587711017833207101432 \\
& 5550216588266041278200122901497676684219641814803583019462296990591112 \\
& 6993897921967321817986478442195134063060064678359754030334303960856670 \\
& 3483740856368972704219205926958570459413034458778737766317296872902209 \\
& 6773871939461088592535234193912878536049772231013533830752722286864466 \\
& 45520706511373820234488918043529860446112677987265442292451 \\
& p= 8651150043557325511450175101264786208775439422974363414691402687392683 \\
& 8617465807737218060864732534779835429286856745443958175654305684571482 \\
& 1187406006409811660901887625785757970044918073643563547474989534274434 \\
& 9444036680156887905621835235579495131134575217730594952389382011952799 \\
& 2513893144681242141885337139933240910034594095241655333780810035436287 \\
& 1109951870215818680246819107214492903711323010930843097199754799801451 \\
& 3126712689350813090877776469762068452734380642840997344165805371355959 \\
& 3568737196797196120707485389647731118058940157480809918125993307434175 \\
& 65437712641882372654734647375636810215509202840599416602729
\end{aligned}
$$

Hint: to check your work, the answer begins " $860 .$. " and the sum of the digits is 2765 .

