Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. [JJJ 1.28] Compute the following values of the order function.
 - (a) $\operatorname{ord}_2(2816)$
 - (b) $\operatorname{ord}_7(2222574487)$
 - (c) $\operatorname{ord}_p(46375)$ for each prime $p \in \{3, 5, 7, 11\}$.
- 2. [JJJ 1.29] Let p be a prime number, and let a and b be positive integers. Prove the following.
 - (a) $\operatorname{ord}_p(ab) = \operatorname{ord}_p(a) + \operatorname{ord}_p(b)$
 - (b) $\operatorname{ord}_p(a+b) \ge \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\}$
 - (c) If $\operatorname{ord}_p(a) \neq \operatorname{ord}_p(b)$, then $\operatorname{ord}_p(a+b) = \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\}$.
- 3. Modular exponentiation in \mathbb{F}_7 .
 - (a) Fill in the table so that row a and column k contains a^k , where $a^k \in \mathbb{F}_7$.

a^k	0	1	2	3	4	5	6	7	
0	1	0	0	0	0	0	0	0	
1									
2									
3									
4									
5									
6									

- (b) For each non-zero element a, find the order of a in \mathbb{F}_{7}^{*} .
- (c) Use the table to find all primitive roots in \mathbb{F}_7 . Verify that the number of primitive roots equals $\phi(6)$.
- 4. Use Fermat's Little Theorem and the fast power algorithm to compute the multiplicative inverse of 68 in \mathbb{F}_{101} .