Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Let $p=281$. Given the following polynomials \mathbf{a} and \mathbf{b} in $\mathbb{F}_{p}[x]$, use a computer program to compute polynomials $\mathbf{d}, \mathbf{u}, \mathbf{v}$ in \mathbb{F}_{p} such that $\operatorname{gcd}(\mathbf{a}, \mathbf{b})=\mathbf{d}=\mathbf{u a}+\mathbf{v b}$. Python classes for working with polynomial rings are given in the supplementary file polynom.py.
(a) $\mathbf{a}=x^{5}-x^{2}+6 x-14$

$$
\mathbf{b}=x^{3}+9 x^{2}+x-1
$$

(b) $\mathbf{a}=x^{6}+x^{5}-x^{4}+6 x^{3}+2 x^{2}-5 x+10$
$\mathbf{b}=x^{7}+2 x^{5}+2 x^{4}-2 x^{3}+6 x^{2}-x+2$
2. Let $p=53$. For the following triples ($\mathbf{a}, \mathbf{b}, \mathbf{f}$), compute $\mathbf{a b}$ in the quotient ring $\mathbb{F}_{p}[x] / \mathbf{f}$. You may check your work with a computer, but these computations should be done by hand.
(a) $\mathbf{a}=4 x^{5}-x^{4}+25 x^{3}+18 x^{2}+45 x+10, \mathbf{b}=1, \mathbf{f}=x^{3}$
(b) $\mathbf{a}=4 x^{5}-x^{4}+25 x^{3}+18 x^{2}+45 x+10, \mathbf{b}=1, \mathbf{f}=x^{3}-1$
(c) $\mathbf{a}=3 x+2, \mathbf{b}=x+22, \mathbf{f}=x^{2}+x+1$
3. Let $p=37$, and let $\mathbf{f}=x^{7}-1$. For each \mathbf{a} in $\mathbb{F}_{p}[x] / \mathbf{f}$, either find the inverse \mathbf{a}^{-1} or explain why the inverse does not exist. A computer program is needed for some (but not all) of these.
(a) $\mathbf{a}=8$
(c) $\mathbf{a}=x$
(e) $\mathbf{a}=x+2$
(g) $\mathbf{a}=x^{2}+1$
(b) $\mathbf{a}=0$
(d) $\mathbf{a}=x+1$
(f) $\mathbf{a}=x^{2}-1$
(h) $\mathbf{a}=x^{3}+x^{2}+1$
4. Alice and Bob agree to use the NTRU cryptosystem with public parameters $(N, p, q, d)=$ $(7,37,479,2)$. Use a computer program to solve the following problems.
(a) Alice chooses $\mathbf{f}=x^{5}-x^{4}+x^{2}-x+1$ and $\mathbf{g}=x^{6}+x^{4}-x^{2}-x$ as her private key. What is her public key \mathbf{h} ?
(b) Bob wants to send the message $\mathbf{m}=4 x^{6}-18 x^{5}+7 x^{2}+x+1$ to Alice and selects $\mathbf{r}=x^{6}+x^{3}-x-1$ as his random element. What is the corresponding ciphertext \mathbf{c} ?
(c) The next day, Alice receives the ciphertext $\mathbf{c}=350 x^{6}+4 x^{5}+415 x^{4}+221 x^{3}+276 x^{2}+$ $464 x+197$ from Bob. What message did Bob send?

