Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. Alice and Bob wish to share a secret using Elliptic Curve-based Diffie-Hellman. They agree on the curve E given by $y^2 = x^3 + 14x + 2$ over \mathbb{F}_{31} and the base element g = (12, 10).
 - (a) Bob picks b = 10 as his private exponent. What should Bob send to Alice?
 - (b) Alice sends A = (18, 17) to Bob. Compute Alice and Bob's shared secret.
 - (c) [Challenge (optional)] Find Alice's private exponent a. In other words, find a such that $g^a = A$. This is an instance of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
- 2. Given polynomials **a** and **b** in $\mathbb{F}_{11}[x]$, find $q, r \in \mathbb{F}_{11}[x]$ such that $\mathbf{a} = \mathbf{q} \cdot \mathbf{b} + \mathbf{r}$ and either $\mathbf{r} = 0$ or deg(\mathbf{r}) < deg(\mathbf{b}).
 - (a) $\mathbf{a} = x^2 + 2x + 1, \, \mathbf{b} = x^3$
 - (b) $\mathbf{a} = x^3, \, \mathbf{b} = x^2 + 2x + 1$
 - (c) $\mathbf{a} = 3x^4 7x + 1$, $\mathbf{b} = x^3 + 5x^2 4$
 - (d) $\mathbf{a} = x^3 x^2 3x + 1, \ \mathbf{b} = 7x^2 + 4x 3$