Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Alice and Bob wish to share a secret using Elliptic Curve-based Diffie-Hellman. They agree on the curve E given by $y^{2}=x^{3}+14 x+2$ over \mathbb{F}_{31} and the base element $g=(12,10)$.
(a) Bob picks $b=10$ as his private exponent. What should Bob send to Alice?
(b) Alice sends $A=(18,17)$ to Bob. Compute Alice and Bob's shared secret.
(c) [Challenge (optional)] Find Alice's private exponent a. In other words, find a such that $g^{a}=A$. This is an instance of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
2. Given polynomials a and \mathbf{b} in $\mathbb{F}_{11}[x]$, find $q, r \in \mathbb{F}_{11}[x]$ such that $\mathbf{a}=\mathbf{q} \cdot \mathbf{b}+\mathbf{r}$ and either $\mathbf{r}=0$ or $\operatorname{deg}(\mathbf{r})<\operatorname{deg}(\mathbf{b})$.
(a) $\mathbf{a}=x^{2}+2 x+1, \mathbf{b}=x^{3}$
(b) $\mathbf{a}=x^{3}, \mathbf{b}=x^{2}+2 x+1$
(c) $\mathbf{a}=3 x^{4}-7 x+1, \mathbf{b}=x^{3}+5 x^{2}-4$
(d) $\mathbf{a}=x^{3}-x^{2}-3 x+1, \mathbf{b}=7 x^{2}+4 x-3$
