Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Alice's public key uses modulus

$$
N=224769641117831 .
$$

Of course, $N=p q$ for some secret primes p and q. Somehow, Eve is able to compute

$$
(p-2)(q-3)=224769565124622 .
$$

Help Eve use this information to factor N. Hint: try to adapt the technique for factoring N given $(p-1)(q-1)$ to this new case.
2. In RSA, Alice picks two large random primes p and q and computes $N=p q=360716097653$. Unfortunately, she generates two private/public exponents, where $e_{1}=3245$ and $e_{2}=2^{16}+1=$ 65537. What's worse, Bob sends Alice the same message m encrypted with both e_{1} and e_{2}, sending both $c_{1}=m^{e_{1}}=217195287254$ and $c_{2}=m^{e_{2}}=965647$ 24994. Help Eve find m efficiently (so, no factoring N or solving a discrete root problem).
3. Bob uses the RSA Signature Scheme. He picks $p=29101$ and $q=12713$, and computes $N=p q=369961013$ and $N^{\prime}=369919200$. He picks $e=328253$ as his public exponent and publishes (N, e) as his public key.
(a) Find Bob's private exponent d.
(b) Bob wishes to sign the message $m=95342$. What is the signature s ?
(c) Alice publishes her RSA public key $\left(N_{A}, e_{A}\right)=(598680829,55213)$. Bob receives three message/signature pairs (m_{i}, s_{i}) claiming to be from Alice:: $(12,456268725),(100,581415411)$, and (25326, 200402993). Which of these messages (if any) are actually from Alice?
4. [JJJ 3.13(a)] Here, we prove that 561 is a Carmichael number. That is, 561 is composite and yet it has no Fermat witnesses. Note that $561=3 \cdot 11 \cdot 17$.
(a) Prove that if $a \in \mathbb{Z}_{561}^{*}$, then a satisfies the system

$$
\begin{aligned}
a^{560} & \equiv 1 & (\bmod 3) \\
a^{560} & \equiv 1 & (\bmod 11) \\
a^{560} & \equiv 1 & (\bmod 17)
\end{aligned}
$$

(b) Prove that 561 has no Fermat witnesses.
5. For each pair (n, a) below, determine whether a is (i) a Fermat witness for n; and (ii) a Miller-Rabin witness for n.
(a) $n=21$ and $a=8$
(b) $n=1279$ and $a=1091$
(c) $n=1722971$ and $a=1711330$
(d) $n=1722971$ and $a=2$
(e) $n=8533633$ and $a=3862185$
(f) $n=8533633$ and $a=5393220$
6. Let E be the elliptic curve given by $y^{2}=x^{3}-27 x+55$. In class, we showed that

$$
[(2,3)(3,1)](-1,-9)=[(-1,-9)](-1,-9)=(-1,-9)^{2}=(34 / 9,71 / 27)
$$

(a) Compute $(3,1)(-1,-9)$.
(b) Use part (a) to verify that $(2,3)[(3,1)(-1,-9)]=(34 / 9,71 / 27)$.

