Directions: Solve 4 of the following 5 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Let (X, \mathcal{F}) be a Steiner Triple System with $|X|=7$.
(a) Prove that if $A, B \in \mathcal{F}$, then $|A \cap B|=1$.
(b) Prove that, up to relabeling the points in X, there is only one Steiner Triple System of order 7.
2. Prove that for each $k \in \mathbb{N}$ there exists n such that in each k-coloring of the non-empty subsets of $[n]$ has disjoint sets A and B such that A, B, and $A \cup B$ have the same color. (Hint: show that $n \leq R_{k}(3 ; 2)$, where $R_{k}(3,3, \ldots, 3)$ is the minimum number of vertices in a complete graph in which every k-coloring contains a monochromatic triangle.)
3. Let S be a set of $R(m, m ; 3)$ points in the plane no three of which are collinear. Prove that S contains m points that form a convex m-gon.
4. The graph $m K_{2}$ is the graph on $2 m$ vertices consisting of m disjoint copies of K_{2}. Prove that $R\left(m K_{2}, m K_{2}\right)=3 m-1$.
5. A function $f:[n] \rightarrow[n]$ is contractive if $f(i) \leq i$ for all i. A monotone k-list for f is a strictly increasing list a_{1}, \ldots, a_{k} from $[n]$ such that $f\left(a_{1}\right) \leq \cdots \leq f\left(a_{k}\right)$. Prove that 2^{k-1} is the least n such that for every contractive mapping on $[n]$ there is a monotone k-list. (Note: there are 2 things to prove. First, you must provide an example of a contractive function $f:[n] \rightarrow[n]$ for $n=2^{k-1}-1$ that has no monotone k-list. Next, you must show that every contractive function $f:[n] \rightarrow[n]$ with $n \geq 2^{k-1}$ has a monotone k-list.) (Hint: For how many a in $[n]$ can the longest monotone list ending with a have j elements?)
