Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines that apply to all homeworks.

1. A cyclic shift of a p-tuple $\left(x_{0}, \ldots, x_{p-1}\right)$ is a p-tuple of the form $\left(x_{k}, x_{k+1}, \ldots, x_{k+p-1}\right)$, where all indices are taken modulo p. For all non-negative integers a, show that p divides $a^{p}-a$ using cyclic shifts when p is prime. (Comment: this yields a combinatorial proof of Fermat's Little Theorem.)
2. Prove that $F_{n}^{2}=F_{n-1} F_{n+1}+(-1)^{n}$ for $n \geq 1$. Manipulate the identity to explain why Lewis Carroll's "proof" below that $64=65$ (and larger analogues) seems reasonable.

3. Generating functions.Let $A(x)$ be the generating function for the Fibonacci sequence F_{n}, with $F_{0}=F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.
(a) Obtain $A(x)$ from the Fibonacci recurrence.
(b) Obtain $A(x)$ by building it combinatorially (without the recurrence), using the model that F_{n} is the number of $\{1,2\}$-lists that sum to n.
(c) Expand the generating function to prove that $F_{n}=\sum_{k \geq 0}\binom{n-k}{k}$.
4. Recall that B_{n} is the number of partitions of $[n]$.
(a) Prove that for each $k \in[n]$, the inequality $B_{n} \geq k^{n-k}$ holds.
(b) Prove that $B_{n} \leq n$! for $n \geq 0$.
(c) Conclude that $\left(\frac{n}{\ln }\right)^{n(1-1 / \ln n)} \leq B_{n} \leq e \sqrt{n+1}\left(\frac{n}{e}\right)^{n}$.
5. Let $s(n)$ be the number of sequences $\left(x_{1}, \ldots, x_{k}\right)$ of integers satisfying $1 \leq x_{i} \leq n$ for all i and $x_{i} \geq 2 x_{i-1}$ for $1<i \leq k$. (The length of the sequence is not specified, and the empty sequence is included, and therefore $s(0)=1$.)
(a) Prove that $s(n)=s(n-1)+s(\lfloor n / 2\rfloor)$ for $n \geq 1$.
(b) Let $S(t)=\sum_{n \geq 0} s(n) t^{n}$, so that $S(t)$ is the generating function for the sequence $\langle s\rangle$. Show that $(1-t) S(t)=(1+t) S\left(t^{2}\right)$.

Medium Challenge: determine good bounds on $s(n)$.
6. Let a_{n} be the number of domino tilings of a $(2 \times n)$-rectangle and let b_{n} be the number of domino tilings of a $(3 \times 2 n)$-rectangle. Obtain bounded order recurrences for $\langle a\rangle$ and $\langle b\rangle$. (Medium challenge: find a bounded order recurrence for the number of domino tilings of a ($4 \times n$)-rectangle.)

