Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines that apply to all homeworks.

- 1. A cyclic shift of a p-tuple (x_0, \ldots, x_{p-1}) is a p-tuple of the form $(x_k, x_{k+1}, \ldots, x_{k+p-1})$, where all indices are taken modulo p. For all non-negative integers a, show that p divides $a^p - a$ using cyclic shifts when p is prime. (Comment: this yields a combinatorial proof of Fermat's Little Theorem.)
- 2. Prove that $F_n^2 = F_{n-1}F_{n+1} + (-1)^n$ for $n \ge 1$. Manipulate the identity to explain why Lewis Carroll's "proof" below that 64 = 65 (and larger analogues) seems reasonable.

- 3. Generating functions.Let A(x) be the generating function for the Fibonacci sequence F_n , with $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.
 - (a) Obtain A(x) from the Fibonacci recurrence.
 - (b) Obtain A(x) by building it combinatorially (without the recurrence), using the model that F_n is the number of $\{1, 2\}$ -lists that sum to n.
 - (c) Expand the generating function to prove that $F_n = \sum_{k>0} {n-k \choose k}$.
- 4. Recall that B_n is the number of partitions of [n].
 - (a) Prove that for each $k \in [n]$, the inequality $B_n \ge k^{n-k}$ holds.
 - (b) Prove that $B_n \leq n!$ for $n \geq 0$.
 - (c) Conclude that $\left(\frac{n}{\ln}\right)^{n(1-1/\ln n)} \leq B_n \leq e\sqrt{n+1} \left(\frac{n}{e}\right)^n$.
- 5. Let s(n) be the number of sequences (x_1, \ldots, x_k) of integers satisfying $1 \le x_i \le n$ for all i and $x_i \ge 2x_{i-1}$ for $1 < i \le k$. (The length of the sequence is not specified, and the empty sequence is included, and therefore s(0) = 1.)
 - (a) Prove that $s(n) = s(n-1) + s(\lfloor n/2 \rfloor)$ for $n \ge 1$.
 - (b) Let $S(t) = \sum_{n \ge 0} s(n)t^n$, so that S(t) is the generating function for the sequence $\langle s \rangle$. Show that $(1-t)S(t) = (1+t)S(t^2)$.

Medium Challenge: determine good bounds on s(n).

6. Let a_n be the number of domino tilings of a (2 × n)-rectangle and let b_n be the number of domino tilings of a (3 × 2n)-rectangle. Obtain bounded order recurrences for ⟨a⟩ and ⟨b⟩. (Medium challenge: find a bounded order recurrence for the number of domino tilings of a (4 × n)-rectangle.)