Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Prove the first three identities below by counting a set in two ways. In each case, give a single direct argument without manipulating the formulas. In part (d), find a closed form solution for the sum and give a combinatorial proof.
(a) $\binom{2 n}{n}=2\binom{2 n-1}{n-1}$
(c) $\sum_{i=1}^{n} i(n-i)=\sum_{i=1}^{n}\binom{i}{2}$
(b) $\sum_{k}\binom{k}{l}\binom{n}{k}=\binom{n}{l} 2^{n-l}$
(d) $\sum_{j=1}^{m}(m-j) 2^{j-1}$
2. Suppose n is divisible by 6 .
(a) For $0 \leq i \leq 5$, let S_{i} be the set of all subsets of [n] with size congruent to i modulo 6 . (So S_{0} consists of all subsets whose size is divisible by 6 , and S_{1} collects the sets whose size has remainder 1 when divided by 6 , etc.) Prove that $\left|S_{1}\right|=\left|S_{5}\right|$ and $\left|S_{2}\right|=\left|S_{4}\right|$.
(b) Let $A=\left|S_{0}\right|, B=\left|S_{3}\right|, C=\left|S_{1}\right|=\left|S_{5}\right|$, and $D=\left|S_{2}\right|=\left|S_{4}\right|$. Show that $A+2 D=2^{n-1}$ and $B+2 C=2^{n-1}$.
(c) Use the Binomial Theorem to show that $3^{n / 2}(-1)^{n / 6}=(A-B)+(C-D)$.
(d) Using an appropriate linear combination of the three equations in parts (b) and (c), find a formula $A+C+D$, the number of subsets of $[n]$ whose size is congruent to 0,1 , or 2 modulo 6 .
3. By pairing positive and negative contributions, give a combinatorial proof for

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2}= \begin{cases}0 & \text { if } n \text { is odd } \\ (-1)^{n / 2}\binom{n}{n / 2} & \text { if } n \text { is even }\end{cases}
$$

4. Give a combinatorial proof for the following identity by devising a set that both sides count.

$$
\sum_{k \geq 1} k\binom{m+1}{r+k+1}=\sum_{i=1}^{m} i 2^{i-1}\binom{m-i}{r}
$$

5. The line segments from $(j, \ln j)$ to $(j+1, \ln (j+1))$ lie below the curve $y=\ln x$ (since $f(x)=\ln x$ is convex). By comparing the area under the segments from $j=1$ to $j=n$ with the area under the curve $y=\ln x$ from $x=1$ to $x=n+1$, show that $n!\leq e \sqrt{n+1}(n / e)^{n}$. [Hint: use that $1+x \leq e^{x}$ for real x.]
6. Flags on poles.
(a) Obtain a simple formula for the number of ways to put m distinct flags on a row of r flagpoles. Poles may be empty, and changing the order of flags on a pole changes the arrangement. The formula must only use one " m " and one " r ". (The answer is 6 for $m=r=2$, as shown below.)

(b) Prove that the identity below for rising factorials holds for all $x, y \in \mathbb{R}$.

$$
(x+y)^{(n)}=\sum_{k}\binom{n}{k} x^{(k)} y^{(n-k)}
$$

