Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Prove the first three identities below by counting a set in two ways. In each case, give a single direct argument without manipulating the formulas. In part (d), find a closed form solution for the sum and give a combinatorial proof.

(a)
$$\binom{2n}{n} = 2\binom{2n-1}{n-1}$$

(b) $\sum_{k} \binom{k}{l} \binom{n}{k} = \binom{n}{l} 2^{n-l}$
(c) $\sum_{i=1}^{n} i(n-i) = \sum_{i=1}^{n} \binom{i}{2}$
(d) $\sum_{j=1}^{m} (m-j) 2^{j-1}$

- 2. Suppose n is divisible by 6.
 - (a) For $0 \le i \le 5$, let S_i be the set of all subsets of [n] with size congruent to i modulo 6. (So S_0 consists of all subsets whose size is divisible by 6, and S_1 collects the sets whose size has remainder 1 when divided by 6, etc.) Prove that $|S_1| = |S_5|$ and $|S_2| = |S_4|$.
 - (b) Let $A = |S_0|$, $B = |S_3|$, $C = |S_1| = |S_5|$, and $D = |S_2| = |S_4|$. Show that $A + 2D = 2^{n-1}$ and $B + 2C = 2^{n-1}$.
 - (c) Use the Binomial Theorem to show that $3^{n/2}(-1)^{n/6} = (A B) + (C D)$.
 - (d) Using an appropriate linear combination of the three equations in parts (b) and (c), find a formula A + C + D, the number of subsets of [n] whose size is congruent to 0, 1, or 2 modulo 6.
- 3. By pairing positive and negative contributions, give a combinatorial proof for

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 = \begin{cases} 0 & \text{if } n \text{ is odd} \\ (-1)^{n/2} \binom{n}{n/2} & \text{if } n \text{ is even} \end{cases}.$$

4. Give a combinatorial proof for the following identity by devising a set that both sides count.

$$\sum_{k \ge 1} k \binom{m+1}{r+k+1} = \sum_{i=1}^{m} i 2^{i-1} \binom{m-i}{r}$$

- 5. The line segments from $(j, \ln j)$ to $(j + 1, \ln(j + 1))$ lie below the curve $y = \ln x$ (since $f(x) = \ln x$ is convex). By comparing the area under the segments from j = 1 to j = n with the area under the curve $y = \ln x$ from x = 1 to x = n + 1, show that $n! \le e\sqrt{n+1}(n/e)^n$. [Hint: use that $1 + x \le e^x$ for real x.]
- 6. Flags on poles.
 - (a) Obtain a simple formula for the number of ways to put m distinct flags on a row of r flagpoles. Poles may be empty, and changing the order of flags on a pole changes the arrangement. The formula must only use one "m" and one "r". (The answer is 6 for m = r = 2, as shown below.)

(b) Prove that the identity below for rising factorials holds for all $x, y \in \mathbb{R}$.

$$(x+y)^{(n)} = \sum_{k} {n \choose k} x^{(k)} y^{(n-k)}$$