Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines that apply to all homeworks.

1. Show that a deck of 16 cards with ranks $\{1,2,3,4\}$ and suits $\{a, b, c, d\}$ can be arranged in a 4×4 array so that each row and each column contains each rank and each suit exactly once.
2. Show that it is possible for 9 students to attend a 4 day orientation, with all students walking to campus in groups of three and each pair of students walking together on exactly one day.
3. Recall that $[n]=\{1,2, \ldots, n\}$.
(a) Count the subsets of $[n]$ that contain at least one odd integer.
(b) Count the k-sets in $[n]$ having no two consecutive integers.
(c) Count the lists of subsets $A_{0}, A_{1}, \ldots, A_{n}$ of $[n]$ such that $A_{0} \subsetneq A_{1} \subsetneq \cdots \subsetneq A_{n}$.
(d) Count the lists such that $A_{0} \subseteq A_{1} \subseteq \cdots \subseteq A_{n}$.
4. Count the lists of m ones and n zeros that have exactly k runs of ones, where a run is a maximal set of consecutive entries with the same value.
5. A permutation is graceful if the absolute differences between successive elements are distinct. Prove that if the set of elements in even-indexed positions of a graceful permutation of $[2 n]$ is $[n]$, then the first and last elements differ by n. (Hint: Let π be a graceful permutation of [2n] such that $\pi(i) \leq n$ if and only if i is even, and evaluate $|\pi(2 n)-\pi(1)|+\sum_{i=1}^{2 n-1}|\pi(i)-\pi(i+1)|$ in two different ways).
6. The displacement of a permutation π of $[n]$ is $\sum_{i=1}^{n}|\pi(i)-i|$. Note that the displacement of π is zero if and only if π is the identity permutation.
(a) For each n, give an example of a permutation of $[n]$ with displacement $\left\lfloor n^{2} / 2\right\rfloor$.
(b) Let π be a permutation of $[n]$, let $S=\{(i, \pi(i)): i \in[n]\}$, let $A=\{(x, y) \in S: y \geq x\}$, and let $B=\{(x, y) \in S: y<x\}$. (Think of A as the set of points in the graph of π on or above the line $y=x$ and B as the set of points in the graph of π below the line $y=x$.) Prove that if π is a permutation with maximum displacement, $(x, y) \in A$, and $\left(x^{\prime}, y^{\prime}\right) \in B$, then $x<x^{\prime}$ and $y>y^{\prime}$.
(c) Use part (b) to show that every permutation of $[n]$ has displacement at most $\left\lfloor n^{2} / 2\right\rfloor$.
(d) For even n, count the number of permutations of $[n]$ that have maximum displacement. (Remark: the analysis above also makes it possible to count the maximum displacement permutations for general n, but the computation is not as nice when n is odd.)
