Name: _____

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [9 parts, 2 points each] Decide whether the following are true or false. Indicate your answer by writing the entire word. No justification required.

$A = \{1, 2\}$ $B = \{1, 2, 3\}$	$C = \{1, 2, 3, \{2, 3\}\}$ $D = \{\emptyset, \{1, 2, 3\}\}$	$\{1,2,3\}\} E = \{\{2,1\},\{2,3\}\}$
(a) $3 \in B$	(d) $B \in C$	(g) $B \subseteq D$
(b) $A \in E$	(e) $2 \subseteq A$	(h) $A \subseteq E$
(c) $\{A\} \in E$	(f) $B \subseteq C$	(i) $\{A\} \subseteq E$
(c) $\{A\} \in E$	(I) $D \subseteq C$	(1) $\{A\} \subseteq E$

2. [6 points] Sketch the set $\{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \in \mathbb{Z}\}$ in the plane. Use dashed lines to indicate boundaries that are omitted from the set.

- $A = \{1, \{1, 2\}, \{2\}\} \qquad B = \{\varnothing, 2, \{1, 2\}, (1, 2)\} \qquad C = \{\varnothing, \{2, 1\}, (2, 1)\}$ (d) $(B - C) \times (C - B)$ (a) $A \cap B$ (e) $\mathcal{P}(C-A)$ (b) $B \cap C$ (c) $(B \cup C) - A$ (f) $(A \cup B \cup C) \cap \mathcal{P}(\mathbb{Z})$
- 3. [6 parts, 2 points each] Express each set by listing the elements between braces.

4. [6 points] Is it true or false that $(A_1 \cup A_2) \times (B_1 \cup B_2) = (A_1 \times B_1) \cup (A_2 \times B_2)$ for all sets A_1, A_2, B_1 , and B_2 ? If true, explain why. If false, give an example where the equality fails.

- 5. [3 parts, 6 points each] Recall that when $\alpha \in \mathbb{R}$, we use $|\alpha|$ to denote the absolute value of α . Let I = [-1, 1] and for each $\alpha \in I$, let $A_{\alpha} = [-1, \alpha] \times [|\alpha|, 1]$. In sketches, use dashes to represent omitted boundaries.
 - (a) Sketch the example sets $A_{-2/3}$, A_0 , $A_{1/2}$, and A_1 .

(b) Sketch $\bigcap_{\alpha \in I} A_{\alpha}$.

(c) Sketch $\bigcup_{\alpha \in I} A_{\alpha}$.

6. [3 parts, 4 points each] Given the open sentences listed below, translate the following English statements into mathematical logic. Then, indicate whether the statement is true or false by writing the entire word.

P(x): x is prime Q(x): x is an even integer R(x): x is a cube integer

- (a) The integer 7 is prime but not even.
- (b) For 64 to be a cube number, it is necessary that 64 is not prime.
- (c) For an integer 7 to be even, it is sufficient for 11 to be prime.

- 7. [2 parts, 6 points each] Let φ be the statement $((P \land Q) \lor \sim P) \Rightarrow (P \Leftrightarrow Q)$.
 - (a) Give a truth table for φ .

(b) Find a simple statement which is logically equivalent to φ .

- 8. [2 parts, 4 points each] Translate the following statements from formal mathematical logic to English, as naturally and efficiently as possible. Then, indicate whether the statement is true or false by writing the entire word.
 - (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0.$

(b) $\forall X \subseteq \mathbb{N}, [X \neq \emptyset \Rightarrow (\exists m \in X, \forall y \in X, y \ge m)].$

9. [2 parts, 4 points each] Negate the following sentences, as naturally and efficiently as possible.

(a) For some real number x, we have $x^2 = 2$.

(b) For each real number x, at least one of $\{\sin(x), \cos(x), \tan(x)\}$ is positive.