Name: $\qquad$
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [4 parts, 1 point each] Suppose that the following sentences appear in a proof. If the sentence is stylistically poor or grammatically incorrect, then rewrite the sentence to fix these problems. Otherwise, write "OK".
(a) The definition of an odd integer is $x=2 a+1$ for any $a \in \mathbb{Z}$.
(b) If one set is not a $\subseteq$ of another, then they are $\neq$.
(c) Each point in the plane is contained in infinitely many lines.
(d) $x$ is even $\Rightarrow x=2 k$ where $k \in \mathbb{Z}$.
2. [2 points] Prove that if $n$ is an integer and $36 \nmid n^{2}$, then $2 \nmid n$ or $3 \nmid n$.
3. [2 points] Suppose that $x \in \mathbb{R}$. Prove that if $x^{3}-2 x^{2}-3 x \geq 0$, then $x \geq-1$.
4. [2 points] Let $a \in \mathbb{Z}$. Show that $a^{2} \equiv a(\bmod 2)$.
