Name:

Directions: Solve the following problems. Give supporting work/justification where appropriate.

- 1. [4 parts, 1 point each] Suppose that the following sentences appear in a proof. If the sentence is stylistically poor or grammatically incorrect, then rewrite the sentence to fix these problems. Otherwise, write "OK".
 - (a) The definition of an odd integer is x = 2a + 1 for any $a \in \mathbb{Z}$.
 - (b) If one set is not a \subseteq of another, then they are \neq .
 - (c) Each point in the plane is contained in infinitely many lines.
 - (d) x is even $\Rightarrow x = 2k$ where $k \in \mathbb{Z}$.
- 2. [2 points] Prove that if n is an integer and $36 \nmid n^2$, then $2 \nmid n$ or $3 \nmid n$.

3. [2 points] Suppose that $x \in \mathbb{R}$. Prove that if $x^3 - 2x^2 - 3x \ge 0$, then $x \ge -1$.

4. [2 points] Let $a \in \mathbb{Z}$. Show that $a^2 \equiv a \pmod{2}$.