Name:
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2.5 points] Prove that if n is an odd integer, then $n^{2}+2 n+3$ is even.
2. [2.5 points] Let d and n be integers. Prove that if $d \mid n$ and $d+1 \mid n$, then $d(d+1) \mid n$.
3. [2 parts, 2.5 points each] Proof critiques. Give a critique of each claimed proof below. A proof critique addresses the following questions: (1) Is the proof correct? (2) If correct, can the proof be improved in some way? (3) If incorrect, what is/are the error(s)? Can they be fixed, and if so, how?
(a) Theorem 1. If n is a positive integer and 2^{n} is odd, then $2 n$ is odd.

Proof: Let n be a positive integer. Note that 2^{n-1} is an integer since $n \geq 1$. Since $2^{n}=2 \cdot 2^{n-1}$, it follows that 2^{n} is even. Since there are no integers which meet the conditions of the hypotheses, the desired conditional statement is true.
(b) Theorem 2. Let a and b be integers. If $a \mid b$, then $|a| \leq|b|$.

Proof: Since $a \mid b$, we have that $b=k a$ for some integer k. Taking the absolute value of both sides gives $|b|=|k a|=|k| \cdot|a|$. Note that the product of two positive integers is at least as large as the factors. Therefore $|b|=|k| \cdot|a| \geq|a|$.

