Name: Solotians

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2.5 points] Prove that if n is an odd integer, then $n^2 + 2n + 3$ is even.

Suppose that n is odd. We have that n=2a+1 for some integer $a \in \mathbb{Z}$. We compute

 $6^{2} + 2n + 3 = (2a+1)^{2} + 2(2a+1) + 3$ $= (4a^{2} + 4a + 1) + (4a+2) + 3$ $= 4a^{2} + 8a + 6$ $= 2(2a^{2} + 4a + 3)$

Since $2a^2 + 4a + 3 \in \mathbb{Z}$, if follows that $n^2 + 2n + 3$ is even. To

2. [2.5 points] Let d and n be integers. Prove that if $d \mid n$ and $d+1 \mid n$, then $d(d+1) \mid n$.

Suppose that $d \mid n$ and $d \mid l \mid n$. There exist integers k, and k_2 such that $n = k_1 d$ and $n = k_2 (d + i)$. Subtracting these

two equations gives

 $O = k_1 d - k_2 (d+1) = k_1 d - k_2 d - k_2 = d(k_1 - k_2) - k_2,$ and so $k_2 = d(k_1 - k_2)$. Substituting this expression for k_2 into $n = k_2 (d+1)$ gives $n = \left[d(k_1 - k_2)\right](d+1) = (k_1 - k_2)(d(d+1)).$ Since $k_1 - k_2 \in \mathbb{Z}$, it follows that $d(d+1) \mid n$.

Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

- 1. [2 parts, 2 points each] *Proof critiques*. Give a critique of each claimed proof below. A proof critique addresses the following questions: (1) Is the proof correct? (2) If correct, can the proof be improved in some way? (3) If incorrect, what is/are the error(s)? Can they be fixed, and if so, how?
 - (a) Theorem 1. If n is a positive integer and 2^n is odd, then 2n is odd.

Proof: Let n be a positive integer. Note that 2^{n-1} is an integer since $n \geq 1$. Since $2^n = 2 \cdot 2^{n-1}$, it follows that 2^n is even. Since there are no integers which meet the conditions of the hypotheses, the desired conditional statement is true.

This proof is [correct]. The statement of the theorem is a bit odd, since it would be more natural as informative to state that 2" is even whenever n is a positive integer.

However, a conditional of the form "FALSE STATEMENT => FALSE STMT."

is valid. (Note: the proof does assume that an even integer.

is not odd. This is not guile so obvious ow it sounds from our definitions but (b) Theorem 2. Let a and b be integers. If a | b, then $|a| \le |b|$. we accept it without additional justification.

Proof: Since $a \mid b$, we have that b = ka for some integer k. Taking the absolute value of both sides gives $|b| = |ka| = |k| \cdot |a|$. Note that the product of two positive integers is at least as large as the factors. Therefore $|b| = |k| \cdot |a| \ge |a|$.

This proof is morrect. There is a problem if k or a is Zevo. In that case, |k| la| is not the product of two positive integers, as implied by the proof.

We can fix it by changing the theorem to stake that "if alb, then $|a| \le |b|$ or b = 0." If $b \ne 0$, then it is the case that $k\ne 0$ and $a\ne 0$, and so there argument above works in this case. Note: b=0" is a necessary addition to the canclusions, for example, if a=5 and b=0, then 5|0| but it is take that $15|\le |0|$.