Math 283 Quiz 6 Fri. Feb. 23, 2018 @

Name: 5 6 ]U"? M«S

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2.5 points] Prove that if n is an odd integer, then n? + 2n + 3 is even.
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2. [2.5 points] Let d and n be integers. Prove that if d | » and d + 1 | n, then d(d + 1) | n.
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Math 283 Quiz 6 Fri. Feb. 23, 2018 @

Name: B O I U'}'l L q

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2 parts, 2 points each] Proof critiqgues. Give a critique of each claimed proof below. A
proof critique addresses the following questions: (1) Is the proof correct? (2) If correct, can
the proof be improved in some way? (3) If incorrect, what is/are the error(s)? Can they be
fixed, and if so, how?

(a) Theorem 1. Ifn is a positive integer and 2" is odd, then 2n is odd.

Proof: Let n be a positive integer. Note that 2”1 is an integer since n > 1. Since
2" = 2.2" 1 it follows that 2" is even. Since there are no integers which meet the
conditions of the hypotheses, the desired conditional statement is true. g
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(b) Theorem 2. Let a and b be integers. If a | b, then |a| < |b]. e acapt it "{/‘—&4"7/{'
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Proof: Since a | b, we have that b = ka for some integer k. Taking the absolute value
of both sides gives |b| = |ka| = |k| - |a|. Note that the product of two positive integers is
at least as large as the factors. Therefore |b| = |k| - |a| > |a. O
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